Example #1
0
if platform.system() == 'Darwin':
  os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
if model_path:
  model = models.load_model(
            model_path,
            custom_objects={'DivByRedSum': DivByRedSum,
                            'mean_pred' : mean_pred,
                            'max_pred': max_pred,
                            'min_pred' : min_pred,
                            'mean_true': mean_true,
                            'max_true': max_true,
                            'min_true':min_true})
else:
  print('Using normal model.')
  model = vgg16_enc_dec_model((img_height, img_width, img_channels),
                              freeze_vgg = False,
                              output_choice = 'sigmoid',
                              **{'reg':None,'dropout':0.1})
  model.load_weights(weights_path)

if tr_or_val == 'tr':
  image_paths = get_img_paths(path_train+"/images")
  mask_paths = get_img_paths(path_train+"/masks")
else:
  image_paths = get_img_paths(path_test+"/images")
  mask_paths = get_img_paths(path_test+"/masks")

#TODO: If there is a problem with NaN values, one can try this:
#for n,layer in enumerate(model.layers):
#  weights = layer.get_weights()
#  new_weights = [np.nan_to_num(w) for w in weights]
#  layer.set_weights(new_weights)
                                       custom_objects={
                                           'DivByRedSum': DivByRedSum,
                                           'mean_pred': mean_pred,
                                           'max_pred': max_pred,
                                           'min_pred': min_pred,
                                           'mean_true': mean_true,
                                           'max_true': max_true,
                                           'min_true': min_true
                                       },
                                       compile=True)
    print('Loaded model from {}'.format(args.load_model))
else:
    print('Using new model with {}'.format(args.model_output_choice))
    template_model = vgg16_enc_dec_model(
        (img_height, img_width, img_channels),
        freeze_vgg=False,
        output_choice=args.model_output_choice,
        **counter_overfit[args.counter_overfit])

n_gpu = len(get_available_gpus())
print('Number of gpu to use: {}'.format(n_gpu))

if n_gpu > 1 and not do_not_use_mult_gpu:
    model = multi_gpu_model(template_model, gpus=n_gpu)
    print("Training using multiple GPUs..")
else:
    model = template_model
    print("Training using single GPU or CPU..")

print('Using {} as loss function'.format(loss_dict[args.loss]))
model.compile(optimizer=keras.optimizers.Adam(clipnorm=1.0),