Example #1
0
    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 dilation=1,
                 downsample=None,
                 style='pytorch',
                 with_cp=False,
                 normalize=dict(type='BN'),
                 dcn=None):
        super(BasicBlock, self).__init__()
        assert dcn is None, "Not implemented yet."

        self.norm1_name, norm1 = build_norm_layer(normalize, planes, postfix=1)
        self.norm2_name, norm2 = build_norm_layer(normalize, planes, postfix=2)

        self.conv1 = conv3x3(inplanes, planes, stride, dilation)
        self.add_module(self.norm1_name, norm1)
        self.conv2 = conv3x3(planes, planes)
        self.add_module(self.norm2_name, norm2)

        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride
        self.dilation = dilation
        assert not with_cp
Example #2
0
 def _make_stem_layer(self):
     self.conv1 = nn.Conv2d(3,
                            64,
                            kernel_size=7,
                            stride=2,
                            padding=3,
                            bias=False)
     self.norm1_name, norm1 = build_norm_layer(self.normalize,
                                               64,
                                               postfix=1)
     self.add_module(self.norm1_name, norm1)
     self.relu = nn.ReLU(inplace=True)
     self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
Example #3
0
def make_res_layer(block,
                   inplanes,
                   planes,
                   blocks,
                   stride=1,
                   dilation=1,
                   groups=1,
                   base_width=4,
                   style='pytorch',
                   with_cp=False,
                   normalize=dict(type='BN'),
                   dcn=None):
    downsample = None
    if stride != 1 or inplanes != planes * block.expansion:
        downsample = nn.Sequential(
            nn.Conv2d(inplanes,
                      planes * block.expansion,
                      kernel_size=1,
                      stride=stride,
                      bias=False),
            build_norm_layer(normalize, planes * block.expansion)[1],
        )

    layers = []
    layers.append(
        block(inplanes,
              planes,
              stride=stride,
              dilation=dilation,
              downsample=downsample,
              groups=groups,
              base_width=base_width,
              style=style,
              with_cp=with_cp,
              normalize=normalize,
              dcn=dcn))
    inplanes = planes * block.expansion
    for i in range(1, blocks):
        layers.append(
            block(inplanes,
                  planes,
                  stride=1,
                  dilation=dilation,
                  groups=groups,
                  base_width=base_width,
                  style=style,
                  with_cp=with_cp,
                  normalize=normalize,
                  dcn=dcn))

    return nn.Sequential(*layers)
Example #4
0
    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 dilation=1,
                 downsample=None,
                 style='pytorch',
                 with_cp=False,
                 normalize=dict(type='BN'),
                 dcn=None):
        """Bottleneck block for ResNet.
        If style is "pytorch", the stride-two layer is the 3x3 conv layer,
        if it is "caffe", the stride-two layer is the first 1x1 conv layer.
        """
        super(Bottleneck, self).__init__()
        assert style in ['pytorch', 'caffe']
        assert dcn is None or isinstance(dcn, dict)
        self.inplanes = inplanes
        self.planes = planes
        self.normalize = normalize
        self.dcn = dcn
        self.with_dcn = dcn is not None
        if style == 'pytorch':
            self.conv1_stride = 1
            self.conv2_stride = stride
        else:
            self.conv1_stride = stride
            self.conv2_stride = 1

        self.norm1_name, norm1 = build_norm_layer(normalize, planes, postfix=1)
        self.norm2_name, norm2 = build_norm_layer(normalize, planes, postfix=2)
        self.norm3_name, norm3 = build_norm_layer(normalize,
                                                  planes * self.expansion,
                                                  postfix=3)

        self.conv1 = nn.Conv2d(inplanes,
                               planes,
                               kernel_size=1,
                               stride=self.conv1_stride,
                               bias=False)
        self.add_module(self.norm1_name, norm1)
        fallback_on_stride = False
        self.with_modulated_dcn = False
        if self.with_dcn:
            fallback_on_stride = dcn.get('fallback_on_stride', False)
            self.with_modulated_dcn = dcn.get('modulated', False)
        if not self.with_dcn or fallback_on_stride:
            self.conv2 = nn.Conv2d(planes,
                                   planes,
                                   kernel_size=3,
                                   stride=self.conv2_stride,
                                   padding=dilation,
                                   dilation=dilation,
                                   bias=False)
        else:
            deformable_groups = dcn.get('deformable_groups', 1)
            if not self.with_modulated_dcn:
                conv_op = DeformConv
                offset_channels = 18
            else:
                conv_op = ModulatedDeformConv
                offset_channels = 27
            self.conv2_offset = nn.Conv2d(planes,
                                          deformable_groups * offset_channels,
                                          kernel_size=3,
                                          stride=self.conv2_stride,
                                          padding=dilation,
                                          dilation=dilation)
            self.conv2 = conv_op(planes,
                                 planes,
                                 kernel_size=3,
                                 stride=self.conv2_stride,
                                 padding=dilation,
                                 dilation=dilation,
                                 deformable_groups=deformable_groups,
                                 bias=False)
        self.add_module(self.norm2_name, norm2)
        self.conv3 = nn.Conv2d(planes,
                               planes * self.expansion,
                               kernel_size=1,
                               bias=False)
        self.add_module(self.norm3_name, norm3)

        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride
        self.dilation = dilation
        self.with_cp = with_cp
        self.normalize = normalize
Example #5
0
    def __init__(self, *args, groups=1, base_width=4, **kwargs):
        """Bottleneck block for ResNeXt.
        If style is "pytorch", the stride-two layer is the 3x3 conv layer,
        if it is "caffe", the stride-two layer is the first 1x1 conv layer.
        """
        super(Bottleneck, self).__init__(*args, **kwargs)
        if groups == 1:
            width = self.planes
        else:
            width = math.floor(self.planes * (base_width / 64)) * groups

        self.norm1_name, norm1 = build_norm_layer(self.normalize,
                                                  width,
                                                  postfix=1)
        self.norm2_name, norm2 = build_norm_layer(self.normalize,
                                                  width,
                                                  postfix=2)
        self.norm3_name, norm3 = build_norm_layer(self.normalize,
                                                  self.planes * self.expansion,
                                                  postfix=3)

        self.conv1 = nn.Conv2d(self.inplanes,
                               width,
                               kernel_size=1,
                               stride=self.conv1_stride,
                               bias=False)
        self.add_module(self.norm1_name, norm1)
        fallback_on_stride = False
        self.with_modulated_dcn = False
        if self.with_dcn:
            fallback_on_stride = self.dcn.get('fallback_on_stride', False)
            self.with_modulated_dcn = self.dcn.get('modulated', False)
        if not self.with_dcn or fallback_on_stride:
            self.conv2 = nn.Conv2d(width,
                                   width,
                                   kernel_size=3,
                                   stride=self.conv2_stride,
                                   padding=self.dilation,
                                   dilation=self.dilation,
                                   groups=groups,
                                   bias=False)
        else:
            groups = self.dcn.get('groups', 1)
            deformable_groups = self.dcn.get('deformable_groups', 1)
            if not self.with_modulated_dcn:
                conv_op = DeformConv
                offset_channels = 18
            else:
                conv_op = ModulatedDeformConv
                offset_channels = 27
            self.conv2_offset = nn.Conv2d(width,
                                          deformable_groups * offset_channels,
                                          kernel_size=3,
                                          stride=self.conv2_stride,
                                          padding=self.dilation,
                                          dilation=self.dilation)
            self.conv2 = conv_op(width,
                                 width,
                                 kernel_size=3,
                                 stride=self.conv2_stride,
                                 padding=self.dilation,
                                 dilation=self.dilation,
                                 groups=groups,
                                 deformable_groups=deformable_groups,
                                 bias=False)
        self.add_module(self.norm2_name, norm2)
        self.conv3 = nn.Conv2d(width,
                               self.planes * self.expansion,
                               kernel_size=1,
                               bias=False)
        self.add_module(self.norm3_name, norm3)