Example #1
0
 def _affine_backward(self, x, w, b, dout):
     layer = Linear(w.shape[0], w.shape[1])
     layer.weight = w
     layer.bias = b
     tmp = layer.forward(x)
     layer.backward(dout)
     return layer.dx, layer.dw, layer.db
Example #2
0
class NN2(object):
    def __init__(self, in_layer_size, hidden_layer_size, out_layer_size):
        self.fc1 = Linear(in_layer_size, hidden_layer_size)
        self.ac1 = ReLu()
        self.fc2 = Linear(hidden_layer_size, out_layer_size)

    def forward(self, x):
        s1 = self.fc1.forward(x)
        a1 = self.ac1.forward(s1)
        a2 = self.fc2.forward(a1)
        return a2

    def update(self, params):
        self.fc1.update([params[0]])
        self.fc2.update([params[1]])

    def backward(self, dL_dy2):
        '''
        output dy/dw2 = d(f(wx+b))/dw = x
        output dy/dw1 = d(f(wx+b))/dw = x 
        '''

        #dL_ds2 = self.ac2.backward(dL_dy2)
        dL_dy1 = self.fc2.backward(dL_dy2)
        dL_ds1 = self.ac1.backward(dL_dy1)
        dL_dy0 = self.fc1.backward(dL_ds1)

        return dL_dy0

    def param(self):
        return [self.fc1.param()[0], self.fc2.param()[0]]
Example #3
0
class NN(object):
    def __init__(self, in_layer_size, out_layer_size):
        self.fc1 = Linear(in_layer_size, out_layer_size, bias=False)
        self.ac1 = Tanh()

    def forward(self, x):
        s1 = self.fc1.forward(x)
        a1 = self.ac1.forward(s1)
        return a1

    def update(self, params):
        #print("W:", params[0].shape)
        self.fc1.update([params[0]])
        if len(params) > 1:
            #print("R:", len([params[1]]))
            self.ac1.update(params[1])
        #print("W:",self.fc1.param()[0][0])
        #print("dW:",self.fc1.param()[0][1])

    def backward(self, dL_dy):
        '''
        output dy/dw2 = d(f(wx+b))/dw = x
        output dy/dw1 = d(f(wx+b))/dw = x 
        '''
        #print(dL_dy)
        dL_ds = self.ac1.backward(dL_dy)
        dL_dy0 = self.fc1.backward(dL_ds)
        #print(dL_dy0)
        return dL_dy0

    def param(self):
        return [self.fc1.param()[0], self.ac1.param()[0]]
bias = torch.Tensor([1, 2, 3, 4])
bias.shape

'''
input = input[:, :, None]
weights.matmul(input).squeeze() + bias'''

lin = Linear(5, 4, ReLU())

output = lin.forward(input)
target = torch.Tensor([[0, 0, 1, 0],
                       [0, 0, 0, 1],
                       [0, 0, 1, 0]])
d_loss = dloss(output, target)

prev_dl_dx = lin.backward(d_loss)

prev_dl_dx.shape

ex_dloss = torch.Tensor([[.1, .2, .2, .1],
                         [.1, .2, .2, .1],
                         [.1, .2, .2, .1]])


dl_ds = drelu(output)*ex_dloss

dl_db = dl_ds.sum()/dl_ds.shape[0]
(drelu(output)*ex_dloss).sum(0)

prev dl_dx = weights.transpose(1,2).matmul(dl_ds[:, :, None]).squeeze()