Example #1
0
    def test_backward(self):
        x = np.random.randn(10, 10)
        dout = np.random.randn(*x.shape)

        dx_num = eval_numerical_gradient_array(lambda x: self._relu_forward(x),
                                               x, dout)

        relu = ReLU()
        out = relu.forward(x)
        relu.backward(dout)
        dx = relu.dx

        self.assertAlmostEquals(rel_error(dx_num, dx), 0, places=7)
Example #2
0
 def test_forward(self):
     x = np.linspace(-0.5, 0.5, num=12).reshape(3, 4)
     relu = ReLU()
     out = relu.forward(x)
     correct_out = np.array([[
         0.,
         0.,
         0.,
         0.,
     ], [
         0.,
         0.,
         0.04545455,
         0.13636364,
     ], [
         0.22727273,
         0.31818182,
         0.40909091,
         0.5,
     ]])
     diff = rel_error(out, correct_out)
     self.assertAlmostEquals(diff, 0, places=7)
Example #3
0
 def _relu_forward(self, x):
     relu = ReLU()
     return relu.forward(x)