def main(): decoded_file = GRAMMAR_WEIGHTS.split(".")[0] + "_decRes.txt" priors_file = GRAMMAR_WEIGHTS.split(".")[0] + "_priorsRes.txt" generation_file = GRAMMAR_WEIGHTS.split(".")[0] + "_generationRes.txt" grammar_model = molecule_vae.ZincCharacterModel(GRAMMAR_WEIGHTS) XTE = read_zinc() XTE = XTE[0:5000] # rember to comment and uncomment the line in the #moelcule_vae file decoded_result = reconstruction(grammar_model, XTE) save_decoded_results(XTE, decoded_result, decoded_file) # decoded_priors = prior(grammar_model) # save_decoded_priors(decoded_priors, priors_file) decoded_generation = generation(grammar_model) save_decoded_priors(decoded_generation, generation_file)
def main(): char_weights = '../../Dropbox/model/zinc_vae_str_L56_E100_val.hdf5' accuracy_save_file = char_weights + '.reconstruct_accuracy.txt' decode_result_save_file = char_weights + '.reconstruct_decode_result.txt' model = molecule_vae.ZincCharacterModel(char_weights) decode_result = reconstruct(model, smiles) accuracy = cal_accuracy(decode_result) print('accuracy:', accuracy) save_result = True if save_result: with open(accuracy_save_file, 'w') as fout: print('accuracy:', accuracy, file=fout) save_decode_result(decode_result, decode_result_save_file)
print 'Train RMSE: ', error print 'Train ll: ', trainll # We load the decoder to obtain the molecules from rdkit.Chem import MolFromSmiles, MolToSmiles from rdkit.Chem import Draw import image import copy import time import sys sys.path.insert(0, '../../../') import molecule_vae grammar_weights = '../../../pretrained/zinc_vae_str_L56_E100_val.hdf5' grammar_model = molecule_vae.ZincCharacterModel(grammar_weights) # We pick the next 50 inputs next_inputs = sgp.batched_greedy_ei(50, np.min(X_train, 0), np.max(X_train, 0)) valid_smiles_final = decode_from_latent_space(next_inputs, grammar_model) from rdkit.Chem import Descriptors from rdkit.Chem import MolFromSmiles, MolToSmiles new_features = next_inputs save_object(valid_smiles_final, "results/valid_smiles{}.dat".format(iteration))