Example #1
0
barostat_interval = 25
barostat = mm.MonteCarloBarostat(pressure, temperature, barostat_interval)
system.addForce(barostat)

#### Platform

platform = mm.Platform.getPlatformByName('CUDA')
properties = {'CudaPrecision': 'mixed'}

#### Simulation

simulation = app.Simulation(topology, system, integrator, platform, properties)

#### Initial Conditions

positions = m3t.get(pdb, coordinates=True)
simulation.context.setPositions(positions)
simulation.context.setVelocitiesToTemperature(temperature)

#### Iterations Parameters

steps_simulation = 10000
steps_interval_saving = 500
steps_interval_verbose = 2500
steps_interval_checkpoint = 2500

time_simulation = (steps_simulation * step_size).in_units_of(unit.picoseconds)
time_saving = (steps_interval_saving * step_size).in_units_of(unit.picoseconds)
time_verbose = (steps_interval_verbose * step_size).in_units_of(
    unit.picoseconds)
time_checkpoint = (steps_interval_checkpoint * step_size).in_units_of(
Example #2
0
time_saving = 1.0 * unit.picoseconds
time_verbose = 100.0 * unit.picoseconds
time_checkpoint = 100.0 * unit.picoseconds

number_iterations = int(time_simulation / time_saving)
elapsed_iterations_verbose = int(time_verbose / time_saving)
elapsed_iterations_checkpoint = int(time_checkpoint / time_saving)
steps_per_iteration = int(time_saving / step_size)
total_simulation_steps = number_iterations * steps_per_iteration

#### Reporters

# Observables Stored

net_mass, n_degrees_of_freedom = m3t.get(system,
                                         net_mass=True,
                                         n_degrees_of_freedom=True)
number_states_saved = number_iterations + 1
data = dict()
data['time'] = unit.Quantity(np.zeros([number_states_saved], np.float64),
                             unit.picoseconds)
data['potential'] = unit.Quantity(np.zeros([number_states_saved], np.float64),
                                  unit.kilocalories_per_mole)
data['kinetic'] = unit.Quantity(np.zeros([number_states_saved], np.float64),
                                unit.kilocalories_per_mole)
data['volume'] = unit.Quantity(np.zeros([number_states_saved], np.float64),
                               unit.nanometers**3)
data['density'] = unit.Quantity(np.zeros([number_states_saved], np.float64),
                                unit.gram / unit.centimeters**3)
data['kinetic_temperature'] = unit.Quantity(
    np.zeros([number_states_saved], np.float64), unit.kelvin)
Example #3
0
import os
import molmodmt as m3t
import simtk.openmm as mm
import simtk.openmm.app as app
import simtk.unit as unit
from openmmtools.integrators import LangevinIntegrator

# Loading initial PDB file

molmod_modeller = m3t.load('system_init.pdb','openmm.Modeller')

# System 

topology = m3t.convert(molmod_modeller, 'openmm.Topology')
positions = m3t.get(molmod_modeller, coordinates=True)
forcefield = app.ForceField('amber99sbildn.xml','tip3p.xml')
system = forcefield.createSystem(topology, constraints=app.HBonds)

# Thermodynamic state (meaningless here but necessary)

temperature = 0.0*unit.kelvin
pressure    = None

# Integrator

friction   = 1.0/unit.picosecond
step_size  = 2.0*unit.femtoseconds
integrator = LangevinIntegrator(temperature, friction, step_size)
integrator.setConstraintTolerance(0.00001)
Example #4
0
barostat_interval = 25
barostat = mm.MonteCarloBarostat(pressure, temperature, barostat_interval)
system.addForce(barostat)

#### Platform

platform = mm.Platform.getPlatformByName('CUDA')
properties = {'CudaPrecision': 'mixed'}

#### Simulation

simulation = app.Simulation(topology, system, integrator, platform, properties)

#### Initial Conditions

positions = m3t.get(pdb, coordinates=True)
simulation.context.setPositions(positions)
simulation.context.setVelocitiesToTemperature(temperature)

#### Iterations Parameters

time_simulation = 1.0 * unit.nanoseconds
time_saving = 1.0 * unit.picoseconds
time_verbose = 100.0 * unit.picoseconds
time_checkpoint = 100.0 * unit.picoseconds

number_iterations = int(time_simulation / time_saving)
elapsed_iterations_verbose = int(time_verbose / time_saving)
elapsed_iterations_checkpoint = int(time_checkpoint / time_saving)
steps_per_iteration = int(time_saving / step_size)
total_simulation_steps = number_iterations * steps_per_iteration