def __call__(self, data: Any): if self.depth: img, seg = create_test_image_3d( self.height, self.width, self.depth, self.num_objs, self.rad_max, self.rad_min, self.noise_max, self.num_seg_classes, self.channel_dim, self.random_state, ) else: img, seg = create_test_image_2d( self.height, self.width, self.num_objs, self.rad_max, self.rad_min, self.noise_max, self.num_seg_classes, self.channel_dim, self.random_state, ) return img, seg
def setUp(self): im, msk = create_test_image_2d(self.im_shape[0], self.im_shape[1], 4, 20, 0, self.num_classes) self.imt = im[None, None] self.seg1 = (msk[None, None] > 0).astype(np.float32) self.segn = msk[None, None]
def __getitem__(self, _unused_id): im, seg = create_test_image_2d(128, 128, noise_max=1, num_objs=4, num_seg_classes=1) return im[None], seg[None].astype(np.float32)
def test_make_nifti(self, params): im, _ = create_test_image_2d(100, 88) created_file = make_nifti_image(im, verbose=True, **params) self.assertTrue(os.path.isfile(created_file))
from unittest.case import skipUnless import torch from parameterized import parameterized from monai.data.synthetic import create_test_image_2d, create_test_image_3d from monai.transforms.utils_pytorch_numpy_unification import moveaxis from monai.utils.module import optional_import from monai.visualize.utils import blend_images from tests.utils import TEST_NDARRAYS plt, has_matplotlib = optional_import("matplotlib.pyplot") TESTS = [] for p in TEST_NDARRAYS: image, label = create_test_image_2d(100, 101) TESTS.append((p(image), p(label))) image, label = create_test_image_3d(100, 101, 102) TESTS.append((p(image), p(label))) @skipUnless(has_matplotlib, "Matplotlib required") class TestBlendImages(unittest.TestCase): @parameterized.expand(TESTS) def test_blend(self, image, label): blended = blend_images(image[None], label[None]) self.assertEqual(type(image), type(blended)) if isinstance(blended, torch.Tensor): self.assertEqual(blended.device, image.device) blended = blended.cpu().numpy()
from monai.data.synthetic import create_test_image_2d, create_test_image_3d from monai.transforms.utils_pytorch_numpy_unification import moveaxis from monai.utils.module import optional_import from monai.visualize.utils import blend_images from tests.utils import TEST_NDARRAYS plt, has_matplotlib = optional_import("matplotlib.pyplot") def get_alpha(img): return 0.5 * np.arange(img.size).reshape(img.shape) / img.size TESTS = [] for p in TEST_NDARRAYS: image, label = create_test_image_2d(100, 101, channel_dim=0) TESTS.append((p(image), p(label), 0.5)) TESTS.append((p(image), p(label), p(get_alpha(image)))) image, label = create_test_image_3d(100, 101, 102, channel_dim=0) TESTS.append((p(image), p(label), 0.5)) TESTS.append((p(image), p(label), p(get_alpha(image)))) @skipUnless(has_matplotlib, "Matplotlib required") class TestBlendImages(unittest.TestCase): @parameterized.expand(TESTS) def test_blend(self, image, label, alpha): blended = blend_images(image, label, alpha) self.assertEqual(type(image), type(blended)) if isinstance(blended, torch.Tensor):