def run_test(batch_size, img_name, seg_name, output_dir, device="cuda:0"):
    ds = ImageDataset([img_name], [seg_name], transform=AddChannel(), seg_transform=AddChannel(), image_only=False)
    loader = DataLoader(ds, batch_size=1, pin_memory=torch.cuda.is_available())

    net = UNet(
        dimensions=3, in_channels=1, out_channels=1, channels=(4, 8, 16, 32), strides=(2, 2, 2), num_res_units=2
    ).to(device)
    roi_size = (16, 32, 48)
    sw_batch_size = batch_size

    def _sliding_window_processor(_engine, batch):
        img, seg, meta_data = batch
        with eval_mode(net):
            seg_probs = sliding_window_inference(img.to(device), roi_size, sw_batch_size, net, device=device)
            return predict_segmentation(seg_probs)

    infer_engine = Engine(_sliding_window_processor)

    SegmentationSaver(
        output_dir=output_dir, output_ext=".nii.gz", output_postfix="seg", batch_transform=lambda x: x[2]
    ).attach(infer_engine)

    infer_engine.run(loader)

    basename = os.path.basename(img_name)[: -len(".nii.gz")]
    saved_name = os.path.join(output_dir, basename, f"{basename}_seg.nii.gz")
    return saved_name
    def test_use_case(self):
        with tempfile.TemporaryDirectory() as tempdir:
            img_ = nib.Nifti1Image(np.random.randint(0, 2, size=(20, 20, 20)),
                                   np.eye(4))
            seg_ = nib.Nifti1Image(np.random.randint(0, 2, size=(20, 20, 20)),
                                   np.eye(4))
            img_name, seg_name = os.path.join(tempdir,
                                              "img.nii.gz"), os.path.join(
                                                  tempdir, "seg.nii.gz")
            nib.save(img_, img_name)
            nib.save(seg_, seg_name)
            img_list, seg_list = [img_name], [seg_name]

            img_xform = _TestCompose([
                EnsureChannelFirst(),
                Spacing(pixdim=(1.5, 1.5, 3.0)),
                RandAdjustContrast()
            ])
            seg_xform = _TestCompose([
                EnsureChannelFirst(),
                Spacing(pixdim=(1.5, 1.5, 3.0), mode="nearest")
            ])
            img_dataset = ImageDataset(
                image_files=img_list,
                seg_files=seg_list,
                transform=img_xform,
                seg_transform=seg_xform,
                image_only=False,
                transform_with_metadata=True,
            )
            self.assertTupleEqual(img_dataset[0][0].shape, (1, 14, 14, 7))
            self.assertTupleEqual(img_dataset[0][1].shape, (1, 14, 14, 7))
def main(tempdir):
    config.print_config()
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    print(f"generating synthetic data to {tempdir} (this may take a while)")
    for i in range(5):
        im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1)

        n = nib.Nifti1Image(im, np.eye(4))
        nib.save(n, os.path.join(tempdir, f"im{i:d}.nii.gz"))

        n = nib.Nifti1Image(seg, np.eye(4))
        nib.save(n, os.path.join(tempdir, f"seg{i:d}.nii.gz"))

    images = sorted(glob(os.path.join(tempdir, "im*.nii.gz")))
    segs = sorted(glob(os.path.join(tempdir, "seg*.nii.gz")))

    # define transforms for image and segmentation
    imtrans = Compose([ScaleIntensity(), AddChannel(), ToTensor()])
    segtrans = Compose([AddChannel(), ToTensor()])
    val_ds = ImageDataset(images, segs, transform=imtrans, seg_transform=segtrans, image_only=False)
    # sliding window inference for one image at every iteration
    val_loader = DataLoader(val_ds, batch_size=1, num_workers=1, pin_memory=torch.cuda.is_available())
    dice_metric = DiceMetric(include_background=True, reduction="mean")
    post_trans = Compose([Activations(sigmoid=True), AsDiscrete(threshold_values=True)])
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = UNet(
        dimensions=3,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(device)

    model.load_state_dict(torch.load("best_metric_model_segmentation3d_array.pth"))
    model.eval()
    with torch.no_grad():
        metric_sum = 0.0
        metric_count = 0
        saver = NiftiSaver(output_dir="./output")
        for val_data in val_loader:
            val_images, val_labels = val_data[0].to(device), val_data[1].to(device)
            # define sliding window size and batch size for windows inference
            roi_size = (96, 96, 96)
            sw_batch_size = 4
            val_outputs = sliding_window_inference(val_images, roi_size, sw_batch_size, model)
            val_outputs = post_trans(val_outputs)
            value, _ = dice_metric(y_pred=val_outputs, y=val_labels)
            metric_count += len(value)
            metric_sum += value.item() * len(value)
            saver.save_batch(val_outputs, val_data[2])
        metric = metric_sum / metric_count
        print("evaluation metric:", metric)
def main():
    monai.config.print_config()
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    # IXI dataset as a demo, downloadable from https://brain-development.org/ixi-dataset/
    images = [
        os.sep.join(["workspace", "data", "medical", "ixi", "IXI-T1", "IXI607-Guys-1097-T1.nii.gz"]),
        os.sep.join(["workspace", "data", "medical", "ixi", "IXI-T1", "IXI175-HH-1570-T1.nii.gz"]),
        os.sep.join(["workspace", "data", "medical", "ixi", "IXI-T1", "IXI385-HH-2078-T1.nii.gz"]),
        os.sep.join(["workspace", "data", "medical", "ixi", "IXI-T1", "IXI344-Guys-0905-T1.nii.gz"]),
        os.sep.join(["workspace", "data", "medical", "ixi", "IXI-T1", "IXI409-Guys-0960-T1.nii.gz"]),
        os.sep.join(["workspace", "data", "medical", "ixi", "IXI-T1", "IXI584-Guys-1129-T1.nii.gz"]),
        os.sep.join(["workspace", "data", "medical", "ixi", "IXI-T1", "IXI253-HH-1694-T1.nii.gz"]),
        os.sep.join(["workspace", "data", "medical", "ixi", "IXI-T1", "IXI092-HH-1436-T1.nii.gz"]),
        os.sep.join(["workspace", "data", "medical", "ixi", "IXI-T1", "IXI574-IOP-1156-T1.nii.gz"]),
        os.sep.join(["workspace", "data", "medical", "ixi", "IXI-T1", "IXI585-Guys-1130-T1.nii.gz"]),
    ]

    # 2 binary labels for gender classification: man and woman
    labels = np.array([0, 0, 1, 0, 1, 0, 1, 0, 1, 0], dtype=np.int64)

    # Define transforms for image
    val_transforms = Compose([ScaleIntensity(), AddChannel(), Resize((96, 96, 96)), ToTensor()])

    # Define image dataset
    val_ds = ImageDataset(image_files=images, labels=labels, transform=val_transforms, image_only=False)
    # create a validation data loader
    val_loader = DataLoader(val_ds, batch_size=2, num_workers=4, pin_memory=torch.cuda.is_available())

    # Create DenseNet121
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = monai.networks.nets.DenseNet121(spatial_dims=3, in_channels=1, out_channels=2).to(device)

    model.load_state_dict(torch.load("best_metric_model_classification3d_array.pth"))
    model.eval()
    with torch.no_grad():
        num_correct = 0.0
        metric_count = 0
        saver = CSVSaver(output_dir="./output")
        for val_data in val_loader:
            val_images, val_labels = val_data[0].to(device), val_data[1].to(device)
            val_outputs = model(val_images).argmax(dim=1)
            value = torch.eq(val_outputs, val_labels)
            metric_count += len(value)
            num_correct += value.sum().item()
            saver.save_batch(val_outputs, val_data[2])
        metric = num_correct / metric_count
        print("evaluation metric:", metric)
        saver.finalize()
def run_test(batch_size, img_name, seg_name, output_dir, device="cuda:0"):
    ds = ImageDataset([img_name], [seg_name],
                      transform=AddChannel(),
                      seg_transform=AddChannel(),
                      image_only=True)
    loader = DataLoader(ds, batch_size=1, pin_memory=torch.cuda.is_available())

    net = UNet(spatial_dims=3,
               in_channels=1,
               out_channels=1,
               channels=(4, 8, 16, 32),
               strides=(2, 2, 2),
               num_res_units=2).to(device)
    roi_size = (16, 32, 48)
    sw_batch_size = batch_size

    saver = SaveImage(output_dir=output_dir,
                      output_ext=".nii.gz",
                      output_postfix="seg")

    def _sliding_window_processor(_engine, batch):
        img = batch[0]  # first item from ImageDataset is the input image
        with eval_mode(net):
            seg_probs = sliding_window_inference(img.to(device),
                                                 roi_size,
                                                 sw_batch_size,
                                                 net,
                                                 device=device)
            return predict_segmentation(seg_probs)

    def save_func(engine):
        if pytorch_after(1, 9, 1):
            for m in engine.state.output:
                saver(m)
        else:
            saver(engine.state.output[0])

    infer_engine = Engine(_sliding_window_processor)
    infer_engine.add_event_handler(Events.ITERATION_COMPLETED, save_func)
    infer_engine.run(loader)

    basename = os.path.basename(img_name)[:-len(".nii.gz")]
    saved_name = os.path.join(output_dir, basename, f"{basename}_seg.nii.gz")
    return saved_name
def main(tempdir):
    config.print_config()
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    print(f"generating synthetic data to {tempdir} (this may take a while)")
    for i in range(5):
        im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1)

        n = nib.Nifti1Image(im, np.eye(4))
        nib.save(n, os.path.join(tempdir, f"im{i:d}.nii.gz"))

        n = nib.Nifti1Image(seg, np.eye(4))
        nib.save(n, os.path.join(tempdir, f"seg{i:d}.nii.gz"))

    images = sorted(glob(os.path.join(tempdir, "im*.nii.gz")))
    segs = sorted(glob(os.path.join(tempdir, "seg*.nii.gz")))

    # define transforms for image and segmentation
    imtrans = Compose([ScaleIntensity(), AddChannel(), ToTensor()])
    segtrans = Compose([AddChannel(), ToTensor()])
    ds = ImageDataset(images,
                      segs,
                      transform=imtrans,
                      seg_transform=segtrans,
                      image_only=False)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    net = UNet(
        dimensions=3,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(device)

    # define sliding window size and batch size for windows inference
    roi_size = (96, 96, 96)
    sw_batch_size = 4

    post_trans = Compose(
        [Activations(sigmoid=True),
         AsDiscrete(threshold_values=True)])

    def _sliding_window_processor(engine, batch):
        net.eval()
        with torch.no_grad():
            val_images, val_labels = batch[0].to(device), batch[1].to(device)
            seg_probs = sliding_window_inference(val_images, roi_size,
                                                 sw_batch_size, net)
            seg_probs = post_trans(seg_probs)
            return seg_probs, val_labels

    evaluator = Engine(_sliding_window_processor)

    # add evaluation metric to the evaluator engine
    MeanDice().attach(evaluator, "Mean_Dice")

    # StatsHandler prints loss at every iteration and print metrics at every epoch,
    # we don't need to print loss for evaluator, so just print metrics, user can also customize print functions
    val_stats_handler = StatsHandler(
        name="evaluator",
        output_transform=lambda x:
        None,  # no need to print loss value, so disable per iteration output
    )
    val_stats_handler.attach(evaluator)

    # for the array data format, assume the 3rd item of batch data is the meta_data
    file_saver = SegmentationSaver(
        output_dir="tempdir",
        output_ext=".nii.gz",
        output_postfix="seg",
        name="evaluator",
        batch_transform=lambda x: x[2],
        output_transform=lambda output: output[0],
    )
    file_saver.attach(evaluator)

    # the model was trained by "unet_training_array" example
    ckpt_saver = CheckpointLoader(
        load_path="./runs_array/net_checkpoint_100.pt", load_dict={"net": net})
    ckpt_saver.attach(evaluator)

    # sliding window inference for one image at every iteration
    loader = DataLoader(ds,
                        batch_size=1,
                        num_workers=1,
                        pin_memory=torch.cuda.is_available())
    state = evaluator.run(loader)
    print(state)
Example #7
0
def main(tempdir):
    config.print_config()
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    print(f"generating synthetic data to {tempdir} (this may take a while)")
    for i in range(5):
        im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1)

        n = nib.Nifti1Image(im, np.eye(4))
        nib.save(n, os.path.join(tempdir, f"im{i:d}.nii.gz"))

        n = nib.Nifti1Image(seg, np.eye(4))
        nib.save(n, os.path.join(tempdir, f"seg{i:d}.nii.gz"))

    images = sorted(glob(os.path.join(tempdir, "im*.nii.gz")))
    segs = sorted(glob(os.path.join(tempdir, "seg*.nii.gz")))

    # define transforms for image and segmentation
    imtrans = Compose([ScaleIntensity(), AddChannel(), EnsureType()])
    segtrans = Compose([AddChannel(), EnsureType()])
    val_ds = ImageDataset(images,
                          segs,
                          transform=imtrans,
                          seg_transform=segtrans,
                          image_only=False)
    # sliding window inference for one image at every iteration
    val_loader = DataLoader(val_ds,
                            batch_size=1,
                            num_workers=1,
                            pin_memory=torch.cuda.is_available())
    dice_metric = DiceMetric(include_background=True,
                             reduction="mean",
                             get_not_nans=False)
    post_trans = Compose(
        [EnsureType(),
         Activations(sigmoid=True),
         AsDiscrete(threshold=0.5)])
    saver = SaveImage(output_dir="./output",
                      output_ext=".nii.gz",
                      output_postfix="seg")
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = UNet(
        spatial_dims=3,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(device)

    model.load_state_dict(
        torch.load("best_metric_model_segmentation3d_array.pth"))
    model.eval()
    with torch.no_grad():
        for val_data in val_loader:
            val_images, val_labels = val_data[0].to(device), val_data[1].to(
                device)
            # define sliding window size and batch size for windows inference
            roi_size = (96, 96, 96)
            sw_batch_size = 4
            val_outputs = sliding_window_inference(val_images, roi_size,
                                                   sw_batch_size, model)
            val_outputs = [post_trans(i) for i in decollate_batch(val_outputs)]
            val_labels = decollate_batch(val_labels)
            meta_data = decollate_batch(val_data[2])
            # compute metric for current iteration
            dice_metric(y_pred=val_outputs, y=val_labels)
            for val_output, data in zip(val_outputs, meta_data):
                saver(val_output, data)
        # aggregate the final mean dice result
        print("evaluation metric:", dice_metric.aggregate().item())
        # reset the status
        dice_metric.reset()
Example #8
0
def main():
    monai.config.print_config()
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    # IXI dataset as a demo, downloadable from https://brain-development.org/ixi-dataset/
    images = [
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI314-IOP-0889-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI249-Guys-1072-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI609-HH-2600-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI173-HH-1590-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI020-Guys-0700-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI342-Guys-0909-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI134-Guys-0780-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI577-HH-2661-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI066-Guys-0731-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI130-HH-1528-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI607-Guys-1097-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI175-HH-1570-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI385-HH-2078-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI344-Guys-0905-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI409-Guys-0960-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI584-Guys-1129-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI253-HH-1694-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI092-HH-1436-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI574-IOP-1156-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI585-Guys-1130-T1.nii.gz"
        ]),
    ]

    # 2 binary labels for gender classification: man and woman
    labels = np.array(
        [0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0],
        dtype=np.int64)

    # Define transforms
    train_transforms = Compose([
        ScaleIntensity(),
        AddChannel(),
        Resize((96, 96, 96)),
        RandRotate90(),
        ToTensor()
    ])
    val_transforms = Compose(
        [ScaleIntensity(),
         AddChannel(),
         Resize((96, 96, 96)),
         ToTensor()])

    # Define image dataset, data loader
    check_ds = ImageDataset(image_files=images,
                            labels=labels,
                            transform=train_transforms)
    check_loader = DataLoader(check_ds,
                              batch_size=2,
                              num_workers=2,
                              pin_memory=torch.cuda.is_available())
    im, label = monai.utils.misc.first(check_loader)
    print(type(im), im.shape, label)

    # create a training data loader
    train_ds = ImageDataset(image_files=images[:10],
                            labels=labels[:10],
                            transform=train_transforms)
    train_loader = DataLoader(train_ds,
                              batch_size=2,
                              shuffle=True,
                              num_workers=2,
                              pin_memory=torch.cuda.is_available())

    # create a validation data loader
    val_ds = ImageDataset(image_files=images[-10:],
                          labels=labels[-10:],
                          transform=val_transforms)
    val_loader = DataLoader(val_ds,
                            batch_size=2,
                            num_workers=2,
                            pin_memory=torch.cuda.is_available())

    # Create DenseNet121, CrossEntropyLoss and Adam optimizer
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = monai.networks.nets.DenseNet121(spatial_dims=3,
                                            in_channels=1,
                                            out_channels=2).to(device)
    loss_function = torch.nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), 1e-5)

    # start a typical PyTorch training
    val_interval = 2
    best_metric = -1
    best_metric_epoch = -1
    epoch_loss_values = list()
    metric_values = list()
    writer = SummaryWriter()
    for epoch in range(5):
        print("-" * 10)
        print(f"epoch {epoch + 1}/{5}")
        model.train()
        epoch_loss = 0
        step = 0
        for batch_data in train_loader:
            step += 1
            inputs, labels = batch_data[0].to(device), batch_data[1].to(device)
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = loss_function(outputs, labels)
            loss.backward()
            optimizer.step()
            epoch_loss += loss.item()
            epoch_len = len(train_ds) // train_loader.batch_size
            print(f"{step}/{epoch_len}, train_loss: {loss.item():.4f}")
            writer.add_scalar("train_loss", loss.item(),
                              epoch_len * epoch + step)
        epoch_loss /= step
        epoch_loss_values.append(epoch_loss)
        print(f"epoch {epoch + 1} average loss: {epoch_loss:.4f}")

        if (epoch + 1) % val_interval == 0:
            model.eval()
            with torch.no_grad():
                num_correct = 0.0
                metric_count = 0
                for val_data in val_loader:
                    val_images, val_labels = val_data[0].to(
                        device), val_data[1].to(device)
                    val_outputs = model(val_images)
                    value = torch.eq(val_outputs.argmax(dim=1), val_labels)
                    metric_count += len(value)
                    num_correct += value.sum().item()
                metric = num_correct / metric_count
                metric_values.append(metric)
                if metric > best_metric:
                    best_metric = metric
                    best_metric_epoch = epoch + 1
                    torch.save(model.state_dict(),
                               "best_metric_model_classification3d_array.pth")
                    print("saved new best metric model")
                print(
                    "current epoch: {} current accuracy: {:.4f} best accuracy: {:.4f} at epoch {}"
                    .format(epoch + 1, metric, best_metric, best_metric_epoch))
                writer.add_scalar("val_accuracy", metric, epoch + 1)
    print(
        f"train completed, best_metric: {best_metric:.4f} at epoch: {best_metric_epoch}"
    )
    writer.close()
Example #9
0
    def test_dataset(self):
        with tempfile.TemporaryDirectory() as tempdir:
            full_names, ref_data = [], []
            for filename in FILENAMES:
                test_image = np.random.randint(0, 2, size=(4, 4, 4))
                ref_data.append(test_image)
                save_path = os.path.join(tempdir, filename)
                full_names.append(save_path)
                nib.save(nib.Nifti1Image(test_image, np.eye(4)), save_path)

            # default loading no meta
            dataset = ImageDataset(full_names)
            for d, ref in zip(dataset, ref_data):
                np.testing.assert_allclose(d, ref, atol=1e-3)

            # loading no meta, int
            dataset = ImageDataset(full_names, dtype=np.float16)
            for d, _ in zip(dataset, ref_data):
                self.assertEqual(d.dtype, np.float16)

            # loading with meta, no transform
            dataset = ImageDataset(full_names, image_only=False)
            for d_tuple, ref in zip(dataset, ref_data):
                d, meta = d_tuple
                np.testing.assert_allclose(d, ref, atol=1e-3)
                np.testing.assert_allclose(meta["original_affine"], np.eye(4))

            # loading image/label, no meta
            dataset = ImageDataset(full_names,
                                   seg_files=full_names,
                                   image_only=True)
            for d_tuple, ref in zip(dataset, ref_data):
                img, seg = d_tuple
                np.testing.assert_allclose(img, ref, atol=1e-3)
                np.testing.assert_allclose(seg, ref, atol=1e-3)

            # loading image/label, no meta
            dataset = ImageDataset(full_names,
                                   transform=lambda x: x + 1,
                                   image_only=True)
            for d, ref in zip(dataset, ref_data):
                np.testing.assert_allclose(d, ref + 1, atol=1e-3)

            # set seg transform, but no seg_files
            with self.assertRaises(RuntimeError):
                dataset = ImageDataset(full_names,
                                       seg_transform=lambda x: x + 1,
                                       image_only=True)
                _ = dataset[0]

            # set seg transform, but no seg_files
            with self.assertRaises(RuntimeError):
                dataset = ImageDataset(full_names,
                                       seg_transform=lambda x: x + 1,
                                       image_only=True)
                _ = dataset[0]

            # loading image/label, with meta
            dataset = ImageDataset(
                full_names,
                transform=lambda x: x + 1,
                seg_files=full_names,
                seg_transform=lambda x: x + 2,
                image_only=False,
            )
            for d_tuple, ref in zip(dataset, ref_data):
                img, seg, meta = d_tuple
                np.testing.assert_allclose(img, ref + 1, atol=1e-3)
                np.testing.assert_allclose(seg, ref + 2, atol=1e-3)
                np.testing.assert_allclose(meta["original_affine"],
                                           np.eye(4),
                                           atol=1e-3)

            # loading image/label, with meta
            dataset = ImageDataset(full_names,
                                   transform=lambda x: x + 1,
                                   seg_files=full_names,
                                   labels=[1, 2, 3],
                                   image_only=False)
            for idx, (d_tuple, ref) in enumerate(zip(dataset, ref_data)):
                img, seg, label, meta = d_tuple
                np.testing.assert_allclose(img, ref + 1, atol=1e-3)
                np.testing.assert_allclose(seg, ref, atol=1e-3)
                np.testing.assert_allclose(idx + 1, label)
                np.testing.assert_allclose(meta["original_affine"],
                                           np.eye(4),
                                           atol=1e-3)

            # loading image/label, with sync. transform
            dataset = ImageDataset(full_names,
                                   transform=RandTest(),
                                   seg_files=full_names,
                                   seg_transform=RandTest(),
                                   image_only=False)
            for d_tuple, ref in zip(dataset, ref_data):
                img, seg, meta = d_tuple
                np.testing.assert_allclose(img, seg, atol=1e-3)
                self.assertTrue(not np.allclose(img, ref))
                np.testing.assert_allclose(meta["original_affine"],
                                           np.eye(4),
                                           atol=1e-3)
Example #10
0
    def test_dataset(self):
        with tempfile.TemporaryDirectory() as tempdir:
            full_names, ref_data = [], []
            for filename in FILENAMES:
                test_image = np.random.randint(0, 2, size=(4, 4, 4))
                ref_data.append(test_image)
                save_path = os.path.join(tempdir, filename)
                full_names.append(save_path)
                nib.save(nib.Nifti1Image(test_image, np.eye(4)), save_path)

            # default loading no meta
            dataset = ImageDataset(full_names)
            for d, ref in zip(dataset, ref_data):
                np.testing.assert_allclose(d, ref, atol=1e-3)

            # loading no meta, int
            dataset = ImageDataset(full_names, dtype=np.float16)
            for d, _ in zip(dataset, ref_data):
                self.assertEqual(d.dtype, np.float16)

            # loading with meta, no transform
            dataset = ImageDataset(full_names, image_only=False)
            for d_tuple, ref in zip(dataset, ref_data):
                d, meta = d_tuple
                np.testing.assert_allclose(d, ref, atol=1e-3)
                np.testing.assert_allclose(meta["original_affine"], np.eye(4))

            # loading image/label, no meta
            dataset = ImageDataset(full_names, seg_files=full_names, image_only=True)
            for d_tuple, ref in zip(dataset, ref_data):
                img, seg = d_tuple
                np.testing.assert_allclose(img, ref, atol=1e-3)
                np.testing.assert_allclose(seg, ref, atol=1e-3)

            # loading image/label, no meta
            dataset = ImageDataset(full_names, transform=lambda x: x + 1, image_only=True)
            for d, ref in zip(dataset, ref_data):
                np.testing.assert_allclose(d, ref + 1, atol=1e-3)

            # loading image/label, with meta
            dataset = ImageDataset(
                full_names,
                transform=lambda x: x + 1,
                seg_files=full_names,
                seg_transform=lambda x: x + 2,
                image_only=False,
            )
            for d_tuple, ref in zip(dataset, ref_data):
                img, seg, meta, seg_meta = d_tuple
                np.testing.assert_allclose(img, ref + 1, atol=1e-3)
                np.testing.assert_allclose(seg, ref + 2, atol=1e-3)
                np.testing.assert_allclose(meta["original_affine"], np.eye(4), atol=1e-3)
                np.testing.assert_allclose(seg_meta["original_affine"], np.eye(4), atol=1e-3)

            # loading image/label, with meta
            dataset = ImageDataset(
                image_files=full_names,
                seg_files=full_names,
                labels=[1, 2, 3],
                transform=lambda x: x + 1,
                label_transform=Compose(
                    [
                        ToNumpy(),
                        MapLabelValue(orig_labels=[1, 2, 3], target_labels=[30.0, 20.0, 10.0], dtype=np.float32),
                    ]
                ),
                image_only=False,
            )
            for idx, (d_tuple, ref) in enumerate(zip(dataset, ref_data)):
                img, seg, label, meta, seg_meta = d_tuple
                np.testing.assert_allclose(img, ref + 1, atol=1e-3)
                np.testing.assert_allclose(seg, ref, atol=1e-3)
                # test label_transform

                np.testing.assert_allclose((3 - idx) * 10.0, label)
                self.assertTrue(isinstance(label, np.ndarray))
                self.assertEqual(label.dtype, np.float32)
                np.testing.assert_allclose(meta["original_affine"], np.eye(4), atol=1e-3)
                np.testing.assert_allclose(seg_meta["original_affine"], np.eye(4), atol=1e-3)

            # loading image/label, with sync. transform
            dataset = ImageDataset(
                full_names, transform=RandTest(), seg_files=full_names, seg_transform=RandTest(), image_only=False
            )
            for d_tuple, ref in zip(dataset, ref_data):
                img, seg, meta, seg_meta = d_tuple
                np.testing.assert_allclose(img, seg, atol=1e-3)
                self.assertTrue(not np.allclose(img, ref))
                np.testing.assert_allclose(meta["original_affine"], np.eye(4), atol=1e-3)
Example #11
0
def main():
    monai.config.print_config()
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    # IXI dataset as a demo, downloadable from https://brain-development.org/ixi-dataset/
    images = [
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI607-Guys-1097-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI175-HH-1570-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI385-HH-2078-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI344-Guys-0905-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI409-Guys-0960-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI584-Guys-1129-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI253-HH-1694-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI092-HH-1436-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI574-IOP-1156-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI585-Guys-1130-T1.nii.gz"
        ]),
    ]

    # 2 binary labels for gender classification: man and woman
    labels = np.array([0, 0, 1, 0, 1, 0, 1, 0, 1, 0], dtype=np.int64)

    # define transforms for image
    val_transforms = Compose(
        [ScaleIntensity(),
         AddChannel(),
         Resize((96, 96, 96)),
         ToTensor()])
    # define image dataset
    val_ds = ImageDataset(image_files=images,
                          labels=labels,
                          transform=val_transforms,
                          image_only=False)
    # create DenseNet121
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    net = monai.networks.nets.densenet.densenet121(spatial_dims=3,
                                                   in_channels=1,
                                                   out_channels=2).to(device)

    metric_name = "Accuracy"
    # add evaluation metric to the evaluator engine
    val_metrics = {metric_name: Accuracy()}

    def prepare_batch(batch, device=None, non_blocking=False):
        return _prepare_batch((batch[0], batch[1]), device, non_blocking)

    # Ignite evaluator expects batch=(img, label) and returns output=(y_pred, y) at every iteration,
    # user can add output_transform to return other values
    evaluator = create_supervised_evaluator(net,
                                            val_metrics,
                                            device,
                                            True,
                                            prepare_batch=prepare_batch)

    # add stats event handler to print validation stats via evaluator
    val_stats_handler = StatsHandler(
        name="evaluator",
        output_transform=lambda x:
        None,  # no need to print loss value, so disable per iteration output
    )
    val_stats_handler.attach(evaluator)

    # for the array data format, assume the 3rd item of batch data is the meta_data
    prediction_saver = ClassificationSaver(
        output_dir="tempdir",
        batch_transform=lambda batch: batch[2],
        output_transform=lambda output: output[0].argmax(1),
    )
    prediction_saver.attach(evaluator)

    # the model was trained by "densenet_training_array" example
    CheckpointLoader(load_path="./runs_array/net_checkpoint_20.pt",
                     load_dict={
                         "net": net
                     }).attach(evaluator)

    # create a validation data loader
    val_loader = DataLoader(val_ds,
                            batch_size=2,
                            num_workers=4,
                            pin_memory=torch.cuda.is_available())

    state = evaluator.run(val_loader)
    print(state)
def main():
    monai.config.print_config()
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    # IXI dataset as a demo, downloadable from https://brain-development.org/ixi-dataset/
    images = [
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI314-IOP-0889-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI249-Guys-1072-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI609-HH-2600-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI173-HH-1590-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI020-Guys-0700-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI342-Guys-0909-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI134-Guys-0780-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI577-HH-2661-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI066-Guys-0731-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI130-HH-1528-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI607-Guys-1097-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI175-HH-1570-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI385-HH-2078-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI344-Guys-0905-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI409-Guys-0960-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI584-Guys-1129-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI253-HH-1694-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI092-HH-1436-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI574-IOP-1156-T1.nii.gz"
        ]),
        os.sep.join([
            "workspace", "data", "medical", "ixi", "IXI-T1",
            "IXI585-Guys-1130-T1.nii.gz"
        ]),
    ]

    # 2 binary labels for gender classification: man and woman
    labels = np.array(
        [0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0],
        dtype=np.int64)

    # define transforms
    train_transforms = Compose([
        ScaleIntensity(),
        AddChannel(),
        Resize((96, 96, 96)),
        RandRotate90(),
        ToTensor()
    ])
    val_transforms = Compose(
        [ScaleIntensity(),
         AddChannel(),
         Resize((96, 96, 96)),
         ToTensor()])

    # define image dataset, data loader
    check_ds = ImageDataset(image_files=images,
                            labels=labels,
                            transform=train_transforms)
    check_loader = DataLoader(check_ds,
                              batch_size=2,
                              num_workers=2,
                              pin_memory=torch.cuda.is_available())
    im, label = monai.utils.misc.first(check_loader)
    print(type(im), im.shape, label)

    # create DenseNet121, CrossEntropyLoss and Adam optimizer
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    net = monai.networks.nets.densenet.densenet121(spatial_dims=3,
                                                   in_channels=1,
                                                   out_channels=2).to(device)
    loss = torch.nn.CrossEntropyLoss()
    lr = 1e-5
    opt = torch.optim.Adam(net.parameters(), lr)

    # Ignite trainer expects batch=(img, label) and returns output=loss at every iteration,
    # user can add output_transform to return other values, like: y_pred, y, etc.
    trainer = create_supervised_trainer(net, opt, loss, device, False)

    # adding checkpoint handler to save models (network params and optimizer stats) during training
    checkpoint_handler = ModelCheckpoint("./runs_array/",
                                         "net",
                                         n_saved=10,
                                         require_empty=False)
    trainer.add_event_handler(event_name=Events.EPOCH_COMPLETED,
                              handler=checkpoint_handler,
                              to_save={
                                  "net": net,
                                  "opt": opt
                              })

    # StatsHandler prints loss at every iteration and print metrics at every epoch,
    # we don't set metrics for trainer here, so just print loss, user can also customize print functions
    # and can use output_transform to convert engine.state.output if it's not loss value
    train_stats_handler = StatsHandler(name="trainer")
    train_stats_handler.attach(trainer)

    # TensorBoardStatsHandler plots loss at every iteration and plots metrics at every epoch, same as StatsHandler
    train_tensorboard_stats_handler = TensorBoardStatsHandler()
    train_tensorboard_stats_handler.attach(trainer)

    # set parameters for validation
    validation_every_n_epochs = 1

    metric_name = "Accuracy"
    # add evaluation metric to the evaluator engine
    val_metrics = {metric_name: Accuracy()}
    # Ignite evaluator expects batch=(img, label) and returns output=(y_pred, y) at every iteration,
    # user can add output_transform to return other values
    evaluator = create_supervised_evaluator(net, val_metrics, device, True)

    # add stats event handler to print validation stats via evaluator
    val_stats_handler = StatsHandler(
        name="evaluator",
        output_transform=lambda x:
        None,  # no need to print loss value, so disable per iteration output
        global_epoch_transform=lambda x: trainer.state.epoch,
    )  # fetch global epoch number from trainer
    val_stats_handler.attach(evaluator)

    # add handler to record metrics to TensorBoard at every epoch
    val_tensorboard_stats_handler = TensorBoardStatsHandler(
        output_transform=lambda x:
        None,  # no need to plot loss value, so disable per iteration output
        global_epoch_transform=lambda x: trainer.state.epoch,
    )  # fetch global epoch number from trainer
    val_tensorboard_stats_handler.attach(evaluator)

    # add early stopping handler to evaluator
    early_stopper = EarlyStopping(
        patience=4,
        score_function=stopping_fn_from_metric(metric_name),
        trainer=trainer)
    evaluator.add_event_handler(event_name=Events.EPOCH_COMPLETED,
                                handler=early_stopper)

    # create a validation data loader
    val_ds = ImageDataset(image_files=images[-10:],
                          labels=labels[-10:],
                          transform=val_transforms)
    val_loader = DataLoader(val_ds,
                            batch_size=2,
                            num_workers=2,
                            pin_memory=torch.cuda.is_available())

    @trainer.on(Events.EPOCH_COMPLETED(every=validation_every_n_epochs))
    def run_validation(engine):
        evaluator.run(val_loader)

    # create a training data loader
    train_ds = ImageDataset(image_files=images[:10],
                            labels=labels[:10],
                            transform=train_transforms)
    train_loader = DataLoader(train_ds,
                              batch_size=2,
                              shuffle=True,
                              num_workers=2,
                              pin_memory=torch.cuda.is_available())

    train_epochs = 30
    state = trainer.run(train_loader, train_epochs)
    print(state)
def main(tempdir):
    monai.config.print_config()
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    # create a temporary directory and 40 random image, mask pairs
    print(f"generating synthetic data to {tempdir} (this may take a while)")
    for i in range(40):
        im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1)

        n = nib.Nifti1Image(im, np.eye(4))
        nib.save(n, os.path.join(tempdir, f"im{i:d}.nii.gz"))

        n = nib.Nifti1Image(seg, np.eye(4))
        nib.save(n, os.path.join(tempdir, f"seg{i:d}.nii.gz"))

    images = sorted(glob(os.path.join(tempdir, "im*.nii.gz")))
    segs = sorted(glob(os.path.join(tempdir, "seg*.nii.gz")))

    # define transforms for image and segmentation
    train_imtrans = Compose([
        ScaleIntensity(),
        AddChannel(),
        RandSpatialCrop((96, 96, 96), random_size=False),
        RandRotate90(prob=0.5, spatial_axes=(0, 2)),
        ToTensor(),
    ])
    train_segtrans = Compose([
        AddChannel(),
        RandSpatialCrop((96, 96, 96), random_size=False),
        RandRotate90(prob=0.5, spatial_axes=(0, 2)),
        ToTensor(),
    ])
    val_imtrans = Compose([ScaleIntensity(), AddChannel(), ToTensor()])
    val_segtrans = Compose([AddChannel(), ToTensor()])

    # define image dataset, data loader
    check_ds = ImageDataset(images,
                            segs,
                            transform=train_imtrans,
                            seg_transform=train_segtrans)
    check_loader = DataLoader(check_ds,
                              batch_size=10,
                              num_workers=2,
                              pin_memory=torch.cuda.is_available())
    im, seg = monai.utils.misc.first(check_loader)
    print(im.shape, seg.shape)

    # create a training data loader
    train_ds = ImageDataset(images[:20],
                            segs[:20],
                            transform=train_imtrans,
                            seg_transform=train_segtrans)
    train_loader = DataLoader(train_ds,
                              batch_size=4,
                              shuffle=True,
                              num_workers=8,
                              pin_memory=torch.cuda.is_available())
    # create a validation data loader
    val_ds = ImageDataset(images[-20:],
                          segs[-20:],
                          transform=val_imtrans,
                          seg_transform=val_segtrans)
    val_loader = DataLoader(val_ds,
                            batch_size=1,
                            num_workers=4,
                            pin_memory=torch.cuda.is_available())
    dice_metric = DiceMetric(include_background=True, reduction="mean")
    post_trans = Compose(
        [Activations(sigmoid=True),
         AsDiscrete(threshold_values=True)])

    # create UNet, DiceLoss and Adam optimizer
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = monai.networks.nets.UNet(
        dimensions=3,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(device)
    loss_function = monai.losses.DiceLoss(sigmoid=True)
    optimizer = torch.optim.Adam(model.parameters(), 1e-3)

    # start a typical PyTorch training
    val_interval = 2
    best_metric = -1
    best_metric_epoch = -1
    epoch_loss_values = list()
    metric_values = list()
    writer = SummaryWriter()
    for epoch in range(5):
        print("-" * 10)
        print(f"epoch {epoch + 1}/{5}")
        model.train()
        epoch_loss = 0
        step = 0
        for batch_data in train_loader:
            step += 1
            inputs, labels = batch_data[0].to(device), batch_data[1].to(device)
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = loss_function(outputs, labels)
            loss.backward()
            optimizer.step()
            epoch_loss += loss.item()
            epoch_len = len(train_ds) // train_loader.batch_size
            print(f"{step}/{epoch_len}, train_loss: {loss.item():.4f}")
            writer.add_scalar("train_loss", loss.item(),
                              epoch_len * epoch + step)
        epoch_loss /= step
        epoch_loss_values.append(epoch_loss)
        print(f"epoch {epoch + 1} average loss: {epoch_loss:.4f}")

        if (epoch + 1) % val_interval == 0:
            model.eval()
            with torch.no_grad():
                metric_sum = 0.0
                metric_count = 0
                val_images = None
                val_labels = None
                val_outputs = None
                for val_data in val_loader:
                    val_images, val_labels = val_data[0].to(
                        device), val_data[1].to(device)
                    roi_size = (96, 96, 96)
                    sw_batch_size = 4
                    val_outputs = sliding_window_inference(
                        val_images, roi_size, sw_batch_size, model)
                    val_outputs = post_trans(val_outputs)
                    value, _ = dice_metric(y_pred=val_outputs, y=val_labels)
                    metric_count += len(value)
                    metric_sum += value.item() * len(value)
                metric = metric_sum / metric_count
                metric_values.append(metric)
                if metric > best_metric:
                    best_metric = metric
                    best_metric_epoch = epoch + 1
                    torch.save(model.state_dict(),
                               "best_metric_model_segmentation3d_array.pth")
                    print("saved new best metric model")
                print(
                    "current epoch: {} current mean dice: {:.4f} best mean dice: {:.4f} at epoch {}"
                    .format(epoch + 1, metric, best_metric, best_metric_epoch))
                writer.add_scalar("val_mean_dice", metric, epoch + 1)
                # plot the last model output as GIF image in TensorBoard with the corresponding image and label
                plot_2d_or_3d_image(val_images,
                                    epoch + 1,
                                    writer,
                                    index=0,
                                    tag="image")
                plot_2d_or_3d_image(val_labels,
                                    epoch + 1,
                                    writer,
                                    index=0,
                                    tag="label")
                plot_2d_or_3d_image(val_outputs,
                                    epoch + 1,
                                    writer,
                                    index=0,
                                    tag="output")

    print(
        f"train completed, best_metric: {best_metric:.4f} at epoch: {best_metric_epoch}"
    )
    writer.close()
Example #14
0
def main(tempdir):
    monai.config.print_config()
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    # create a temporary directory and 40 random image, mask pairs
    print(f"generating synthetic data to {tempdir} (this may take a while)")
    for i in range(40):
        im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1)

        n = nib.Nifti1Image(im, np.eye(4))
        nib.save(n, os.path.join(tempdir, f"im{i:d}.nii.gz"))

        n = nib.Nifti1Image(seg, np.eye(4))
        nib.save(n, os.path.join(tempdir, f"seg{i:d}.nii.gz"))

    images = sorted(glob(os.path.join(tempdir, "im*.nii.gz")))
    segs = sorted(glob(os.path.join(tempdir, "seg*.nii.gz")))

    # define transforms for image and segmentation
    train_imtrans = Compose(
        [
            ScaleIntensity(),
            AddChannel(),
            RandSpatialCrop((96, 96, 96), random_size=False),
            ToTensor(),
        ]
    )
    train_segtrans = Compose(
        [AddChannel(), RandSpatialCrop((96, 96, 96), random_size=False), ToTensor()]
    )
    val_imtrans = Compose(
        [ScaleIntensity(), AddChannel(), Resize((96, 96, 96)), ToTensor()]
    )
    val_segtrans = Compose([AddChannel(), Resize((96, 96, 96)), ToTensor()])

    # define image dataset, data loader
    check_ds = ImageDataset(
        images, segs, transform=train_imtrans, seg_transform=train_segtrans
    )
    check_loader = DataLoader(
        check_ds, batch_size=10, num_workers=2, pin_memory=torch.cuda.is_available()
    )
    im, seg = monai.utils.misc.first(check_loader)
    print(im.shape, seg.shape)

    # create a training data loader
    train_ds = ImageDataset(
        images[:20], segs[:20], transform=train_imtrans, seg_transform=train_segtrans
    )
    train_loader = DataLoader(
        train_ds,
        batch_size=5,
        shuffle=True,
        num_workers=8,
        pin_memory=torch.cuda.is_available(),
    )
    # create a validation data loader
    val_ds = ImageDataset(
        images[-20:], segs[-20:], transform=val_imtrans, seg_transform=val_segtrans
    )
    val_loader = DataLoader(
        val_ds, batch_size=5, num_workers=8, pin_memory=torch.cuda.is_available()
    )

    # create UNet, DiceLoss and Adam optimizer
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    net = monai.networks.nets.UNet(
        dimensions=3,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(device)
    loss = monai.losses.DiceLoss(sigmoid=True)
    lr = 1e-3
    opt = torch.optim.Adam(net.parameters(), lr)

    # Ignite trainer expects batch=(img, seg) and returns output=loss at every iteration,
    # user can add output_transform to return other values, like: y_pred, y, etc.
    trainer = create_supervised_trainer(net, opt, loss, device, False)

    # adding checkpoint handler to save models (network params and optimizer stats) during training
    checkpoint_handler = ModelCheckpoint(
        "./runs_array/", "net", n_saved=10, require_empty=False
    )
    trainer.add_event_handler(
        event_name=Events.EPOCH_COMPLETED,
        handler=checkpoint_handler,
        to_save={"net": net, "opt": opt},
    )

    # StatsHandler prints loss at every iteration and print metrics at every epoch,
    # we don't set metrics for trainer here, so just print loss, user can also customize print functions
    # and can use output_transform to convert engine.state.output if it's not a loss value
    train_stats_handler = StatsHandler(name="trainer")
    train_stats_handler.attach(trainer)

    # TensorBoardStatsHandler plots loss at every iteration and plots metrics at every epoch, same as StatsHandler
    train_tensorboard_stats_handler = TensorBoardStatsHandler()
    train_tensorboard_stats_handler.attach(trainer)

    validation_every_n_epochs = 1
    # Set parameters for validation
    metric_name = "Mean_Dice"
    # add evaluation metric to the evaluator engine
    val_metrics = {metric_name: MeanDice()}

    post_pred = Compose([Activations(sigmoid=True), AsDiscrete(threshold_values=True)])
    post_label = AsDiscrete(threshold_values=True)

    # Ignite evaluator expects batch=(img, seg) and returns output=(y_pred, y) at every iteration,
    # user can add output_transform to return other values
    evaluator = create_supervised_evaluator(
        net,
        val_metrics,
        device,
        True,
        output_transform=lambda x, y, y_pred: (post_pred(y_pred), post_label(y)),
    )

    @trainer.on(Events.EPOCH_COMPLETED(every=validation_every_n_epochs))
    def run_validation(engine):
        evaluator.run(val_loader)

    # add early stopping handler to evaluator
    early_stopper = EarlyStopping(
        patience=4, score_function=stopping_fn_from_metric(metric_name), trainer=trainer
    )
    evaluator.add_event_handler(
        event_name=Events.EPOCH_COMPLETED, handler=early_stopper
    )

    # add stats event handler to print validation stats via evaluator
    val_stats_handler = StatsHandler(
        name="evaluator",
        output_transform=lambda x: None,  # no need to print loss value, so disable per iteration output
        global_epoch_transform=lambda x: trainer.state.epoch,
    )  # fetch global epoch number from trainer
    val_stats_handler.attach(evaluator)

    # add handler to record metrics to TensorBoard at every validation epoch
    val_tensorboard_stats_handler = TensorBoardStatsHandler(
        output_transform=lambda x: None,  # no need to plot loss value, so disable per iteration output
        global_epoch_transform=lambda x: trainer.state.epoch,
    )  # fetch global epoch number from trainer
    val_tensorboard_stats_handler.attach(evaluator)

    # add handler to draw the first image and the corresponding label and model output in the last batch
    # here we draw the 3D output as GIF format along Depth axis, at every validation epoch
    val_tensorboard_image_handler = TensorBoardImageHandler(
        batch_transform=lambda batch: (batch[0], batch[1]),
        output_transform=lambda output: output[0],
        global_iter_transform=lambda x: trainer.state.epoch,
    )
    evaluator.add_event_handler(
        event_name=Events.EPOCH_COMPLETED, handler=val_tensorboard_image_handler
    )

    train_epochs = 30
    state = trainer.run(train_loader, train_epochs)
    print(state)