def test_nans(self, input_data):
     [seg_1, seg_2] = input_data
     seg_1 = torch.tensor(seg_1)
     seg_2 = torch.tensor(seg_2)
     sur_metric = SurfaceDistanceMetric(include_background=False, get_not_nans=True)
     # test list of channel-first Tensor
     batch_seg_1 = [seg_1.unsqueeze(0)]
     batch_seg_2 = [seg_2.unsqueeze(0)]
     sur_metric(batch_seg_1, batch_seg_2)
     result, not_nans = sur_metric.aggregate()
     np.testing.assert_allclose(0, result, rtol=1e-7)
     np.testing.assert_allclose(0, not_nans, rtol=1e-7)
Example #2
0
    def __init__(
        self,
        include_background: bool = False,
        symmetric: bool = False,
        distance_metric: str = "euclidean",
        output_transform: Callable = lambda x: x,
        device: Optional[torch.device] = None,
    ) -> None:
        """

        Args:
            include_background: whether to include distance computation on the first channel of the predicted output.
                Defaults to ``False``.
            symmetric: whether to calculate the symmetric average surface distance between
                `seg_pred` and `seg_gt`. Defaults to ``False``.
            distance_metric: : [``"euclidean"``, ``"chessboard"``, ``"taxicab"``]
                the metric used to compute surface distance. Defaults to ``"euclidean"``.
            output_transform: transform the ignite.engine.state.output into [y_pred, y] pair.
            device: device specification in case of distributed computation usage.

        """
        metric_fn = SurfaceDistanceMetric(
            include_background=include_background,
            symmetric=symmetric,
            distance_metric=distance_metric,
            reduction=MetricReduction.NONE,
        )
        super().__init__(metric_fn=metric_fn,
                         output_transform=output_transform,
                         device=device)
 def test_nans(self, input_data):
     [seg_1, seg_2] = input_data
     seg_1 = torch.tensor(seg_1)
     seg_2 = torch.tensor(seg_2)
     sur_metric = SurfaceDistanceMetric(include_background=False)
     batch_seg_1 = seg_1.unsqueeze(0).unsqueeze(0)
     batch_seg_2 = seg_2.unsqueeze(0).unsqueeze(0)
     result, not_nans = sur_metric(batch_seg_1, batch_seg_2)
     np.testing.assert_allclose(0, result, rtol=1e-7)
     np.testing.assert_allclose(0, not_nans, rtol=1e-7)
 def test_value(self, input_data, expected_value):
     if len(input_data) == 3:
         [seg_1, seg_2, metric] = input_data
     else:
         [seg_1, seg_2] = input_data
         metric = "euclidean"
     ct = 0
     seg_1 = torch.tensor(seg_1)
     seg_2 = torch.tensor(seg_2)
     for symmetric in [True, False]:
         sur_metric = SurfaceDistanceMetric(include_background=False, symmetric=symmetric, distance_metric=metric)
         # shape of seg_1, seg_2 are: HWD, converts to BNHWD
         batch, n_class = 2, 3
         batch_seg_1 = seg_1.unsqueeze(0).unsqueeze(0).repeat([batch, n_class, 1, 1, 1])
         batch_seg_2 = seg_2.unsqueeze(0).unsqueeze(0).repeat([batch, n_class, 1, 1, 1])
         sur_metric(batch_seg_1, batch_seg_2)
         result = sur_metric.aggregate()
         expected_value_curr = expected_value[ct]
         np.testing.assert_allclose(expected_value_curr, result, rtol=1e-7)
         ct += 1
Example #5
0
    def __init__(
        self,
        include_background: bool = False,
        symmetric: bool = False,
        distance_metric: str = "euclidean",
        reduction: Union[MetricReduction, str] = MetricReduction.MEAN,
        output_transform: Callable = lambda x: x,
        save_details: bool = True,
    ) -> None:
        """

        Args:
            include_background: whether to include distance computation on the first channel of the predicted output.
                Defaults to ``False``.
            symmetric: whether to calculate the symmetric average surface distance between
                `seg_pred` and `seg_gt`. Defaults to ``False``.
            distance_metric: : [``"euclidean"``, ``"chessboard"``, ``"taxicab"``]
                the metric used to compute surface distance. Defaults to ``"euclidean"``.
            reduction: {``"none"``, ``"mean"``, ``"sum"``, ``"mean_batch"``, ``"sum_batch"``,
                ``"mean_channel"``, ``"sum_channel"``}
                Define the mode to reduce computation result. Defaults to ``"mean"``.
            output_transform: callable to extract `y_pred` and `y` from `ignite.engine.state.output` then
                construct `(y_pred, y)` pair, where `y_pred` and `y` can be `batch-first` Tensors or
                lists of `channel-first` Tensors. the form of `(y_pred, y)` is required by the `update()`.
                `engine.state` and `output_transform` inherit from the ignite concept:
                https://pytorch.org/ignite/concepts.html#state, explanation and usage example are in the tutorial:
                https://github.com/Project-MONAI/tutorials/blob/master/modules/batch_output_transform.ipynb.
            save_details: whether to save metric computation details per image, for example: surface dice
                of every image. default to True, will save to `engine.state.metric_details` dict with the metric name as key.

        """
        metric_fn = SurfaceDistanceMetric(
            include_background=include_background,
            symmetric=symmetric,
            distance_metric=distance_metric,
            reduction=reduction,
        )
        super().__init__(metric_fn=metric_fn,
                         output_transform=output_transform,
                         save_details=save_details)
Example #6
0
    def __init__(
        self,
        include_background: bool = False,
        symmetric: bool = False,
        distance_metric: str = "euclidean",
        output_transform: Callable = lambda x: x,
        save_details: bool = True,
    ) -> None:
        """

        Args:
            include_background: whether to include distance computation on the first channel of the predicted output.
                Defaults to ``False``.
            symmetric: whether to calculate the symmetric average surface distance between
                `seg_pred` and `seg_gt`. Defaults to ``False``.
            distance_metric: : [``"euclidean"``, ``"chessboard"``, ``"taxicab"``]
                the metric used to compute surface distance. Defaults to ``"euclidean"``.
            output_transform: callable to extract `y_pred` and `y` from `ignite.engine.state.output` then
                construct `(y_pred, y)` pair, where `y_pred` and `y` can be `batch-first` Tensors or
                lists of `channel-first` Tensors. the form of `(y_pred, y)` is required by the `update()`.
                for example: if `ignite.engine.state.output` is `{"pred": xxx, "label": xxx, "other": xxx}`,
                output_transform can be `lambda x: (x["pred"], x["label"])`.
            save_details: whether to save metric computation details per image, for example: surface dice
                of every image. default to True, will save to `engine.state.metric_details` dict with the metric name as key.

        """
        metric_fn = SurfaceDistanceMetric(
            include_background=include_background,
            symmetric=symmetric,
            distance_metric=distance_metric,
            reduction=MetricReduction.MEAN,
        )
        super().__init__(
            metric_fn=metric_fn,
            output_transform=output_transform,
            save_details=save_details,
        )
Example #7
0
    def __init__(
        self,
        include_background: bool = False,
        symmetric: bool = False,
        distance_metric: str = "euclidean",
        output_transform: Callable = lambda x: x,
        device: Union[str, torch.device] = "cpu",
        save_details: bool = True,
    ) -> None:
        """

        Args:
            include_background: whether to include distance computation on the first channel of the predicted output.
                Defaults to ``False``.
            symmetric: whether to calculate the symmetric average surface distance between
                `seg_pred` and `seg_gt`. Defaults to ``False``.
            distance_metric: : [``"euclidean"``, ``"chessboard"``, ``"taxicab"``]
                the metric used to compute surface distance. Defaults to ``"euclidean"``.
            output_transform: transform the ignite.engine.state.output into [y_pred, y] pair.
            device: device specification in case of distributed computation usage.
            save_details: whether to save metric computation details per image, for example: surface dice
                of every image. default to True, will save to `engine.state.metric_details` dict with the metric name as key.

        """
        metric_fn = SurfaceDistanceMetric(
            include_background=include_background,
            symmetric=symmetric,
            distance_metric=distance_metric,
            reduction=MetricReduction.NONE,
        )
        super().__init__(
            metric_fn=metric_fn,
            output_transform=output_transform,
            device=device,
            save_details=save_details,
        )