Example #1
0
 def test_ill_arg(self):
     param = {"params": [Variable(torch.randn(10), requires_grad=True)]}
     with self.assertRaisesRegex(ValueError, "Invalid learning rate: -1"):
         Novograd(param, lr=-1)
     with self.assertRaisesRegex(ValueError, "Invalid epsilon value: -1"):
         Novograd(param, eps=-1)
     with self.assertRaisesRegex(ValueError, "Invalid beta parameter at index 0: 1.0"):
         Novograd(param, betas=(1.0, 0.98))
     with self.assertRaisesRegex(ValueError, "Invalid beta parameter at index 1: -1"):
         Novograd(param, betas=(0.9, -1))
     with self.assertRaisesRegex(ValueError, "Invalid weight_decay value: -1"):
         Novograd(param, weight_decay=-1)
Example #2
0
    def test_step(self, specify_param, default_param, weight, bias, input):
        optimizer = Novograd(specify_param, **default_param)

        def fn():
            optimizer.zero_grad()
            y = weight.mv(input)
            if y.is_cuda and bias.is_cuda and y.get_device() != bias.get_device():
                y = y.cuda(bias.get_device())
            loss = (y + bias).pow(2).sum()
            loss.backward()
            return loss

        initial_value = fn().item()
        for _ in range(100):
            optimizer.step(fn)
        self.assertLess(fn().item(), initial_value)
    def test_train_timing(self):
        images = sorted(glob(os.path.join(self.data_dir, "img*.nii.gz")))
        segs = sorted(glob(os.path.join(self.data_dir, "seg*.nii.gz")))
        train_files = [{
            "image": img,
            "label": seg
        } for img, seg in zip(images[:32], segs[:32])]
        val_files = [{
            "image": img,
            "label": seg
        } for img, seg in zip(images[-9:], segs[-9:])]

        device = torch.device("cuda:0")
        # define transforms for train and validation
        train_transforms = Compose([
            LoadImaged(keys=["image", "label"]),
            EnsureChannelFirstd(keys=["image", "label"]),
            Spacingd(keys=["image", "label"],
                     pixdim=(1.0, 1.0, 1.0),
                     mode=("bilinear", "nearest")),
            ScaleIntensityd(keys="image"),
            CropForegroundd(keys=["image", "label"], source_key="image"),
            # pre-compute foreground and background indexes
            # and cache them to accelerate training
            FgBgToIndicesd(keys="label", fg_postfix="_fg", bg_postfix="_bg"),
            # change to execute transforms with Tensor data
            EnsureTyped(keys=["image", "label"]),
            # move the data to GPU and cache to avoid CPU -> GPU sync in every epoch
            ToDeviced(keys=["image", "label"], device=device),
            # randomly crop out patch samples from big
            # image based on pos / neg ratio
            # the image centers of negative samples
            # must be in valid image area
            RandCropByPosNegLabeld(
                keys=["image", "label"],
                label_key="label",
                spatial_size=(64, 64, 64),
                pos=1,
                neg=1,
                num_samples=4,
                fg_indices_key="label_fg",
                bg_indices_key="label_bg",
            ),
            RandFlipd(keys=["image", "label"], prob=0.5, spatial_axis=[1, 2]),
            RandAxisFlipd(keys=["image", "label"], prob=0.5),
            RandRotate90d(keys=["image", "label"],
                          prob=0.5,
                          spatial_axes=(1, 2)),
            RandZoomd(keys=["image", "label"],
                      prob=0.5,
                      min_zoom=0.8,
                      max_zoom=1.2,
                      keep_size=True),
            RandRotated(
                keys=["image", "label"],
                prob=0.5,
                range_x=np.pi / 4,
                mode=("bilinear", "nearest"),
                align_corners=True,
                dtype=np.float64,
            ),
            RandAffined(keys=["image", "label"],
                        prob=0.5,
                        rotate_range=np.pi / 2,
                        mode=("bilinear", "nearest")),
            RandGaussianNoised(keys="image", prob=0.5),
            RandStdShiftIntensityd(keys="image",
                                   prob=0.5,
                                   factors=0.05,
                                   nonzero=True),
        ])

        val_transforms = Compose([
            LoadImaged(keys=["image", "label"]),
            EnsureChannelFirstd(keys=["image", "label"]),
            Spacingd(keys=["image", "label"],
                     pixdim=(1.0, 1.0, 1.0),
                     mode=("bilinear", "nearest")),
            ScaleIntensityd(keys="image"),
            CropForegroundd(keys=["image", "label"], source_key="image"),
            EnsureTyped(keys=["image", "label"]),
            # move the data to GPU and cache to avoid CPU -> GPU sync in every epoch
            ToDeviced(keys=["image", "label"], device=device),
        ])

        max_epochs = 5
        learning_rate = 2e-4
        val_interval = 1  # do validation for every epoch

        # set CacheDataset, ThreadDataLoader and DiceCE loss for MONAI fast training
        train_ds = CacheDataset(data=train_files,
                                transform=train_transforms,
                                cache_rate=1.0,
                                num_workers=8)
        val_ds = CacheDataset(data=val_files,
                              transform=val_transforms,
                              cache_rate=1.0,
                              num_workers=5)
        # disable multi-workers because `ThreadDataLoader` works with multi-threads
        train_loader = ThreadDataLoader(train_ds,
                                        num_workers=0,
                                        batch_size=4,
                                        shuffle=True)
        val_loader = ThreadDataLoader(val_ds, num_workers=0, batch_size=1)

        loss_function = DiceCELoss(to_onehot_y=True,
                                   softmax=True,
                                   squared_pred=True,
                                   batch=True)
        model = UNet(
            spatial_dims=3,
            in_channels=1,
            out_channels=2,
            channels=(16, 32, 64, 128, 256),
            strides=(2, 2, 2, 2),
            num_res_units=2,
            norm=Norm.BATCH,
        ).to(device)

        # Novograd paper suggests to use a bigger LR than Adam,
        # because Adam does normalization by element-wise second moments
        optimizer = Novograd(model.parameters(), learning_rate * 10)
        scaler = torch.cuda.amp.GradScaler()

        post_pred = Compose(
            [EnsureType(), AsDiscrete(argmax=True, to_onehot=2)])
        post_label = Compose([EnsureType(), AsDiscrete(to_onehot=2)])

        dice_metric = DiceMetric(include_background=True,
                                 reduction="mean",
                                 get_not_nans=False)

        best_metric = -1
        total_start = time.time()
        for epoch in range(max_epochs):
            epoch_start = time.time()
            print("-" * 10)
            print(f"epoch {epoch + 1}/{max_epochs}")
            model.train()
            epoch_loss = 0
            step = 0
            for batch_data in train_loader:
                step_start = time.time()
                step += 1
                optimizer.zero_grad()
                # set AMP for training
                with torch.cuda.amp.autocast():
                    outputs = model(batch_data["image"])
                    loss = loss_function(outputs, batch_data["label"])
                scaler.scale(loss).backward()
                scaler.step(optimizer)
                scaler.update()
                epoch_loss += loss.item()
                epoch_len = math.ceil(len(train_ds) / train_loader.batch_size)
                print(f"{step}/{epoch_len}, train_loss: {loss.item():.4f}"
                      f" step time: {(time.time() - step_start):.4f}")
            epoch_loss /= step
            print(f"epoch {epoch + 1} average loss: {epoch_loss:.4f}")

            if (epoch + 1) % val_interval == 0:
                model.eval()
                with torch.no_grad():
                    for val_data in val_loader:
                        roi_size = (96, 96, 96)
                        sw_batch_size = 4
                        # set AMP for validation
                        with torch.cuda.amp.autocast():
                            val_outputs = sliding_window_inference(
                                val_data["image"], roi_size, sw_batch_size,
                                model)

                        val_outputs = [
                            post_pred(i) for i in decollate_batch(val_outputs)
                        ]
                        val_labels = [
                            post_label(i)
                            for i in decollate_batch(val_data["label"])
                        ]
                        dice_metric(y_pred=val_outputs, y=val_labels)

                    metric = dice_metric.aggregate().item()
                    dice_metric.reset()
                    if metric > best_metric:
                        best_metric = metric
                    print(
                        f"epoch: {epoch + 1} current mean dice: {metric:.4f}, best mean dice: {best_metric:.4f}"
                    )
            print(
                f"time consuming of epoch {epoch + 1} is: {(time.time() - epoch_start):.4f}"
            )

        total_time = time.time() - total_start
        print(
            f"train completed, best_metric: {best_metric:.4f} total time: {total_time:.4f}"
        )
        # test expected metrics
        self.assertGreater(best_metric, 0.95)
Example #4
0
def main_worker(args):
    # disable logging for processes except 0 on every node
    if args.local_rank != 0:
        f = open(os.devnull, "w")
        sys.stdout = sys.stderr = f
    if not os.path.exists(args.dir):
        raise FileNotFoundError(f"missing directory {args.dir}")

    # initialize the distributed training process, every GPU runs in a process
    dist.init_process_group(backend="nccl", init_method="env://")
    device = torch.device(f"cuda:{args.local_rank}")
    torch.cuda.set_device(device)
    # use amp to accelerate training
    scaler = torch.cuda.amp.GradScaler()
    torch.backends.cudnn.benchmark = True

    total_start = time.time()
    train_transforms = Compose([
        # load 4 Nifti images and stack them together
        LoadImaged(keys=["image", "label"]),
        EnsureChannelFirstd(keys="image"),
        ConvertToMultiChannelBasedOnBratsClassesd(keys="label"),
        Orientationd(keys=["image", "label"], axcodes="RAS"),
        Spacingd(
            keys=["image", "label"],
            pixdim=(1.0, 1.0, 1.0),
            mode=("bilinear", "nearest"),
        ),
        EnsureTyped(keys=["image", "label"]),
        ToDeviced(keys=["image", "label"], device=device),
        RandSpatialCropd(keys=["image", "label"],
                         roi_size=[224, 224, 144],
                         random_size=False),
        RandFlipd(keys=["image", "label"], prob=0.5, spatial_axis=0),
        RandFlipd(keys=["image", "label"], prob=0.5, spatial_axis=1),
        RandFlipd(keys=["image", "label"], prob=0.5, spatial_axis=2),
        NormalizeIntensityd(keys="image", nonzero=True, channel_wise=True),
        RandScaleIntensityd(keys="image", factors=0.1, prob=0.5),
        RandShiftIntensityd(keys="image", offsets=0.1, prob=0.5),
    ])

    # create a training data loader
    train_ds = BratsCacheDataset(
        root_dir=args.dir,
        transform=train_transforms,
        section="training",
        num_workers=4,
        cache_rate=args.cache_rate,
        shuffle=True,
    )
    # ThreadDataLoader can be faster if no IO operations when caching all the data in memory
    train_loader = ThreadDataLoader(train_ds,
                                    num_workers=0,
                                    batch_size=args.batch_size,
                                    shuffle=True)

    # validation transforms and dataset
    val_transforms = Compose([
        LoadImaged(keys=["image", "label"]),
        EnsureChannelFirstd(keys="image"),
        ConvertToMultiChannelBasedOnBratsClassesd(keys="label"),
        Orientationd(keys=["image", "label"], axcodes="RAS"),
        Spacingd(
            keys=["image", "label"],
            pixdim=(1.0, 1.0, 1.0),
            mode=("bilinear", "nearest"),
        ),
        NormalizeIntensityd(keys="image", nonzero=True, channel_wise=True),
        EnsureTyped(keys=["image", "label"]),
        ToDeviced(keys=["image", "label"], device=device),
    ])
    val_ds = BratsCacheDataset(
        root_dir=args.dir,
        transform=val_transforms,
        section="validation",
        num_workers=4,
        cache_rate=args.cache_rate,
        shuffle=False,
    )
    # ThreadDataLoader can be faster if no IO operations when caching all the data in memory
    val_loader = ThreadDataLoader(val_ds,
                                  num_workers=0,
                                  batch_size=args.batch_size,
                                  shuffle=False)

    # create network, loss function and optimizer
    if args.network == "SegResNet":
        model = SegResNet(
            blocks_down=[1, 2, 2, 4],
            blocks_up=[1, 1, 1],
            init_filters=16,
            in_channels=4,
            out_channels=3,
            dropout_prob=0.0,
        ).to(device)
    else:
        model = UNet(
            spatial_dims=3,
            in_channels=4,
            out_channels=3,
            channels=(16, 32, 64, 128, 256),
            strides=(2, 2, 2, 2),
            num_res_units=2,
        ).to(device)

    loss_function = DiceFocalLoss(
        smooth_nr=1e-5,
        smooth_dr=1e-5,
        squared_pred=True,
        to_onehot_y=False,
        sigmoid=True,
        batch=True,
    )
    optimizer = Novograd(model.parameters(), lr=args.lr)
    lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
        optimizer, T_max=args.epochs)
    # wrap the model with DistributedDataParallel module
    model = DistributedDataParallel(model, device_ids=[device])

    dice_metric = DiceMetric(include_background=True, reduction="mean")
    dice_metric_batch = DiceMetric(include_background=True,
                                   reduction="mean_batch")

    post_trans = Compose(
        [EnsureType(),
         Activations(sigmoid=True),
         AsDiscrete(threshold=0.5)])

    # start a typical PyTorch training
    best_metric = -1
    best_metric_epoch = -1
    print(f"time elapsed before training: {time.time() - total_start}")
    train_start = time.time()
    for epoch in range(args.epochs):
        epoch_start = time.time()
        print("-" * 10)
        print(f"epoch {epoch + 1}/{args.epochs}")
        epoch_loss = train(train_loader, model, loss_function, optimizer,
                           lr_scheduler, scaler)
        print(f"epoch {epoch + 1} average loss: {epoch_loss:.4f}")

        if (epoch + 1) % args.val_interval == 0:
            metric, metric_tc, metric_wt, metric_et = evaluate(
                model, val_loader, dice_metric, dice_metric_batch, post_trans)

            if metric > best_metric:
                best_metric = metric
                best_metric_epoch = epoch + 1
                if dist.get_rank() == 0:
                    torch.save(model.state_dict(), "best_metric_model.pth")
            print(
                f"current epoch: {epoch + 1} current mean dice: {metric:.4f}"
                f" tc: {metric_tc:.4f} wt: {metric_wt:.4f} et: {metric_et:.4f}"
                f"\nbest mean dice: {best_metric:.4f} at epoch: {best_metric_epoch}"
            )

        print(
            f"time consuming of epoch {epoch + 1} is: {(time.time() - epoch_start):.4f}"
        )

    print(
        f"train completed, best_metric: {best_metric:.4f} at epoch: {best_metric_epoch},"
        f" total train time: {(time.time() - train_start):.4f}")
    dist.destroy_process_group()
Example #5
0
max_epochs = 6
learning_rate = 1e-4
val_interval = 2
model = UNet(
    spatial_dims=3,
    in_channels=1,
    out_channels=2,
    channels=(16, 32, 64, 128, 256),
    strides=(2, 2, 2, 2),
    num_res_units=2,
    norm=Norm.BATCH,
).to(device)
loss_function = DiceCELoss(
    to_onehot_y=True, softmax=True, squared_pred=True, batch=True
)
optimizer = Novograd(model.parameters(), learning_rate * 10)
scaler = torch.cuda.amp.GradScaler()
dice_metric = DiceMetric(
    include_background=True, reduction="mean", get_not_nans=False
)

post_pred = Compose(
    [EnsureType(), AsDiscrete(argmax=True, to_onehot=2)]
)
post_label = Compose([EnsureType(), AsDiscrete(to_onehot=2)])

best_metric = -1
best_metric_epoch = -1
best_metrics_epochs_and_time = [[], [], []]
epoch_loss_values = []
metric_values = []
Example #6
0
def main(cfg):
    # -------------------------------------------------------------------------
    # Configs
    # -------------------------------------------------------------------------
    # Create log/model dir
    log_dir = create_log_dir(cfg)

    # Set the logger
    logging.basicConfig(
        format="%(asctime)s %(levelname)2s %(message)s",
        level=logging.INFO,
        datefmt="%Y-%m-%d %H:%M:%S",
    )
    log_name = os.path.join(log_dir, "logs.txt")
    logger = logging.getLogger()
    fh = logging.FileHandler(log_name)
    fh.setLevel(logging.INFO)
    logger.addHandler(fh)

    # Set TensorBoard summary writer
    writer = SummaryWriter(log_dir)

    # Save configs
    logging.info(json.dumps(cfg))
    with open(os.path.join(log_dir, "config.json"), "w") as fp:
        json.dump(cfg, fp, indent=4)

    # Set device cuda/cpu
    device = set_device(cfg)

    # Set cudnn benchmark/deterministic
    if cfg["benchmark"]:
        torch.backends.cudnn.benchmark = True
    else:
        set_determinism(seed=0)
    # -------------------------------------------------------------------------
    # Transforms and Datasets
    # -------------------------------------------------------------------------
    # Pre-processing
    preprocess_cpu_train = None
    preprocess_gpu_train = None
    preprocess_cpu_valid = None
    preprocess_gpu_valid = None
    if cfg["backend"] == "cucim":
        preprocess_cpu_train = Compose([ToTensorD(keys="label")])
        preprocess_gpu_train = Compose([
            Range()(ToCupy()),
            Range("ColorJitter")(RandCuCIM(name="color_jitter",
                                           brightness=64.0 / 255.0,
                                           contrast=0.75,
                                           saturation=0.25,
                                           hue=0.04)),
            Range("RandomFlip")(RandCuCIM(name="image_flip",
                                          apply_prob=cfg["prob"],
                                          spatial_axis=-1)),
            Range("RandomRotate90")(RandCuCIM(name="rand_image_rotate_90",
                                              prob=cfg["prob"],
                                              max_k=3,
                                              spatial_axis=(-2, -1))),
            Range()(CastToType(dtype=np.float32)),
            Range("RandomZoom")(RandCuCIM(name="rand_zoom",
                                          min_zoom=0.9,
                                          max_zoom=1.1)),
            Range("ScaleIntensity")(CuCIM(name="scale_intensity_range",
                                          a_min=0.0,
                                          a_max=255.0,
                                          b_min=-1.0,
                                          b_max=1.0)),
            Range()(ToTensor(device=device)),
        ])
        preprocess_cpu_valid = Compose([ToTensorD(keys="label")])
        preprocess_gpu_valid = Compose([
            Range("ValidToCupyAndCast")(ToCupy(dtype=np.float32)),
            Range("ValidScaleIntensity")(CuCIM(name="scale_intensity_range",
                                               a_min=0.0,
                                               a_max=255.0,
                                               b_min=-1.0,
                                               b_max=1.0)),
            Range("ValidToTensor")(ToTensor(device=device)),
        ])
    elif cfg["backend"] == "numpy":
        preprocess_cpu_train = Compose([
            Range()(ToTensorD(keys=("image", "label"))),
            Range("ColorJitter")(TorchVisionD(
                keys="image",
                name="ColorJitter",
                brightness=64.0 / 255.0,
                contrast=0.75,
                saturation=0.25,
                hue=0.04,
            )),
            Range()(ToNumpyD(keys="image")),
            Range("RandomFlip")(RandFlipD(keys="image",
                                          prob=cfg["prob"],
                                          spatial_axis=-1)),
            Range("RandomRotate90")(RandRotate90D(keys="image",
                                                  prob=cfg["prob"])),
            Range()(CastToTypeD(keys="image", dtype=np.float32)),
            Range("RandomZoom")(RandZoomD(keys="image",
                                          prob=cfg["prob"],
                                          min_zoom=0.9,
                                          max_zoom=1.1)),
            Range("ScaleIntensity")(ScaleIntensityRangeD(keys="image",
                                                         a_min=0.0,
                                                         a_max=255.0,
                                                         b_min=-1.0,
                                                         b_max=1.0)),
            Range()(ToTensorD(keys="image")),
        ])
        preprocess_cpu_valid = Compose([
            Range("ValidCastType")(CastToTypeD(keys="image",
                                               dtype=np.float32)),
            Range("ValidScaleIntensity")(ScaleIntensityRangeD(keys="image",
                                                              a_min=0.0,
                                                              a_max=255.0,
                                                              b_min=-1.0,
                                                              b_max=1.0)),
            Range("ValidToTensor")(ToTensorD(keys=("image", "label"))),
        ])
    else:
        raise ValueError(
            f"Backend should be either numpy or cucim! ['{cfg['backend']}' is provided.]"
        )

    # Post-processing
    postprocess = Compose([
        Activations(sigmoid=True),
        AsDiscrete(threshold=0.5),
    ])

    # Create MONAI dataset
    train_json_info_list = load_decathlon_datalist(
        data_list_file_path=cfg["dataset_json"],
        data_list_key="training",
        base_dir=cfg["data_root"],
    )
    valid_json_info_list = load_decathlon_datalist(
        data_list_file_path=cfg["dataset_json"],
        data_list_key="validation",
        base_dir=cfg["data_root"],
    )
    train_dataset = PatchWSIDataset(
        data=train_json_info_list,
        region_size=cfg["region_size"],
        grid_shape=cfg["grid_shape"],
        patch_size=cfg["patch_size"],
        transform=preprocess_cpu_train,
        image_reader_name="openslide" if cfg["use_openslide"] else "cuCIM",
    )
    valid_dataset = PatchWSIDataset(
        data=valid_json_info_list,
        region_size=cfg["region_size"],
        grid_shape=cfg["grid_shape"],
        patch_size=cfg["patch_size"],
        transform=preprocess_cpu_valid,
        image_reader_name="openslide" if cfg["use_openslide"] else "cuCIM",
    )

    # DataLoaders
    train_dataloader = DataLoader(train_dataset,
                                  num_workers=cfg["num_workers"],
                                  batch_size=cfg["batch_size"],
                                  pin_memory=cfg["pin"])
    valid_dataloader = DataLoader(valid_dataset,
                                  num_workers=cfg["num_workers"],
                                  batch_size=cfg["batch_size"],
                                  pin_memory=cfg["pin"])

    # Get sample batch and some info
    first_sample = first(train_dataloader)
    if first_sample is None:
        raise ValueError("First sample is None!")
    for d in ["image", "label"]:
        logging.info(f"[{d}] \n"
                     f"  {d} shape: {first_sample[d].shape}\n"
                     f"  {d} type:  {type(first_sample[d])}\n"
                     f"  {d} dtype: {first_sample[d].dtype}")
    logging.info(f"Batch size: {cfg['batch_size']}")
    logging.info(f"[Training] number of batches: {len(train_dataloader)}")
    logging.info(f"[Validation] number of batches: {len(valid_dataloader)}")
    # -------------------------------------------------------------------------
    # Deep Learning Model and Configurations
    # -------------------------------------------------------------------------
    # Initialize model
    model = TorchVisionFCModel("resnet18",
                               n_classes=1,
                               use_conv=True,
                               pretrained=cfg["pretrain"])
    model = model.to(device)

    # Loss function
    loss_func = torch.nn.BCEWithLogitsLoss()
    loss_func = loss_func.to(device)

    # Optimizer
    if cfg["novograd"] is True:
        optimizer = Novograd(model.parameters(), lr=cfg["lr"])
    else:
        optimizer = SGD(model.parameters(), lr=cfg["lr"], momentum=0.9)

    # AMP scaler
    cfg["amp"] = cfg["amp"] and monai.utils.get_torch_version_tuple() >= (1, 6)
    if cfg["amp"] is True:
        scaler = GradScaler()
    else:
        scaler = None

    # Learning rate scheduler
    if cfg["cos"] is True:
        scheduler = lr_scheduler.CosineAnnealingLR(optimizer,
                                                   T_max=cfg["n_epochs"])
    else:
        scheduler = None

    # -------------------------------------------------------------------------
    # Training/Evaluating
    # -------------------------------------------------------------------------
    train_counter = {"n_epochs": cfg["n_epochs"], "epoch": 1, "step": 1}

    total_valid_time, total_train_time = 0.0, 0.0
    t_start = time.perf_counter()
    metric_summary = {"loss": np.Inf, "accuracy": 0, "best_epoch": 1}
    # Training/Validation Loop
    for _ in range(cfg["n_epochs"]):
        t_epoch = time.perf_counter()
        logging.info(
            f"[Training] learning rate: {optimizer.param_groups[0]['lr']}")

        # Training
        with Range("Training Epoch"):
            train_counter = training(
                train_counter,
                model,
                loss_func,
                optimizer,
                scaler,
                cfg["amp"],
                train_dataloader,
                preprocess_gpu_train,
                postprocess,
                device,
                writer,
                cfg["print_step"],
            )
        if scheduler is not None:
            scheduler.step()
        if cfg["save"]:
            torch.save(
                model.state_dict(),
                os.path.join(log_dir,
                             f"model_epoch_{train_counter['epoch']}.pt"))
        t_train = time.perf_counter()
        train_time = t_train - t_epoch
        total_train_time += train_time

        # Validation
        if cfg["validate"]:
            with Range("Validation"):
                valid_loss, valid_acc = validation(
                    model,
                    loss_func,
                    cfg["amp"],
                    valid_dataloader,
                    preprocess_gpu_valid,
                    postprocess,
                    device,
                    cfg["print_step"],
                )
            t_valid = time.perf_counter()
            valid_time = t_valid - t_train
            total_valid_time += valid_time
            if valid_loss < metric_summary["loss"]:
                metric_summary["loss"] = min(valid_loss,
                                             metric_summary["loss"])
                metric_summary["accuracy"] = max(valid_acc,
                                                 metric_summary["accuracy"])
                metric_summary["best_epoch"] = train_counter["epoch"]
            writer.add_scalar("valid/loss", valid_loss, train_counter["epoch"])
            writer.add_scalar("valid/accuracy", valid_acc,
                              train_counter["epoch"])

            logging.info(
                f"[Epoch: {train_counter['epoch']}/{cfg['n_epochs']}] loss: {valid_loss:.3f}, accuracy: {valid_acc:.2f}, "
                f"time: {t_valid - t_epoch:.1f}s (train: {train_time:.1f}s, valid: {valid_time:.1f}s)"
            )
        else:
            logging.info(
                f"[Epoch: {train_counter['epoch']}/{cfg['n_epochs']}] Train time: {train_time:.1f}s"
            )
        writer.flush()
    t_end = time.perf_counter()

    # Save final metrics
    metric_summary["train_time_per_epoch"] = total_train_time / cfg["n_epochs"]
    metric_summary["total_time"] = t_end - t_start
    writer.add_hparams(hparam_dict=cfg,
                       metric_dict=metric_summary,
                       run_name=log_dir)
    writer.close()
    logging.info(f"Metric Summary: {metric_summary}")

    # Save the best and final model
    if cfg["validate"] is True:
        copyfile(
            os.path.join(log_dir,
                         f"model_epoch_{metric_summary['best_epoch']}.pth"),
            os.path.join(log_dir, "model_best.pth"),
        )
        copyfile(
            os.path.join(log_dir, f"model_epoch_{cfg['n_epochs']}.pth"),
            os.path.join(log_dir, "model_final.pth"),
        )

    # Final prints
    logging.info(
        f"[Completed] {train_counter['epoch']} epochs -- time: {t_end - t_start:.1f}s "
        f"(training: {total_train_time:.1f}s, validation: {total_valid_time:.1f}s)",
    )
    logging.info(f"Logs and model was saved at: {log_dir}")
Example #7
0
def train(cfg):
    log_dir = create_log_dir(cfg)
    device = set_device(cfg)
    # --------------------------------------------------------------------------
    # Data Loading and Preprocessing
    # --------------------------------------------------------------------------
    # __________________________________________________________________________
    # Build MONAI preprocessing
    train_preprocess = Compose([
        ToTensorD(keys="image"),
        TorchVisionD(keys="image",
                     name="ColorJitter",
                     brightness=64.0 / 255.0,
                     contrast=0.75,
                     saturation=0.25,
                     hue=0.04),
        ToNumpyD(keys="image"),
        RandFlipD(keys="image", prob=0.5),
        RandRotate90D(keys="image", prob=0.5),
        CastToTypeD(keys="image", dtype=np.float32),
        RandZoomD(keys="image", prob=0.5, min_zoom=0.9, max_zoom=1.1),
        ScaleIntensityRangeD(keys="image",
                             a_min=0.0,
                             a_max=255.0,
                             b_min=-1.0,
                             b_max=1.0),
        ToTensorD(keys=("image", "label")),
    ])
    valid_preprocess = Compose([
        CastToTypeD(keys="image", dtype=np.float32),
        ScaleIntensityRangeD(keys="image",
                             a_min=0.0,
                             a_max=255.0,
                             b_min=-1.0,
                             b_max=1.0),
        ToTensorD(keys=("image", "label")),
    ])
    # __________________________________________________________________________
    # Create MONAI dataset
    train_json_info_list = load_decathlon_datalist(
        data_list_file_path=cfg["dataset_json"],
        data_list_key="training",
        base_dir=cfg["data_root"],
    )
    valid_json_info_list = load_decathlon_datalist(
        data_list_file_path=cfg["dataset_json"],
        data_list_key="validation",
        base_dir=cfg["data_root"],
    )

    train_dataset = PatchWSIDataset(
        train_json_info_list,
        cfg["region_size"],
        cfg["grid_shape"],
        cfg["patch_size"],
        train_preprocess,
        image_reader_name="openslide" if cfg["use_openslide"] else "cuCIM",
    )
    valid_dataset = PatchWSIDataset(
        valid_json_info_list,
        cfg["region_size"],
        cfg["grid_shape"],
        cfg["patch_size"],
        valid_preprocess,
        image_reader_name="openslide" if cfg["use_openslide"] else "cuCIM",
    )

    # __________________________________________________________________________
    # DataLoaders
    train_dataloader = DataLoader(train_dataset,
                                  num_workers=cfg["num_workers"],
                                  batch_size=cfg["batch_size"],
                                  pin_memory=True)
    valid_dataloader = DataLoader(valid_dataset,
                                  num_workers=cfg["num_workers"],
                                  batch_size=cfg["batch_size"],
                                  pin_memory=True)

    # __________________________________________________________________________
    # Get sample batch and some info
    first_sample = first(train_dataloader)
    if first_sample is None:
        raise ValueError("Fist sample is None!")

    print("image: ")
    print("    shape", first_sample["image"].shape)
    print("    type: ", type(first_sample["image"]))
    print("    dtype: ", first_sample["image"].dtype)
    print("labels: ")
    print("    shape", first_sample["label"].shape)
    print("    type: ", type(first_sample["label"]))
    print("    dtype: ", first_sample["label"].dtype)
    print(f"batch size: {cfg['batch_size']}")
    print(f"train number of batches: {len(train_dataloader)}")
    print(f"valid number of batches: {len(valid_dataloader)}")

    # --------------------------------------------------------------------------
    # Deep Learning Classification Model
    # --------------------------------------------------------------------------
    # __________________________________________________________________________
    # initialize model
    model = TorchVisionFCModel("resnet18",
                               num_classes=1,
                               use_conv=True,
                               pretrained=cfg["pretrain"])
    model = model.to(device)

    # loss function
    loss_func = torch.nn.BCEWithLogitsLoss()
    loss_func = loss_func.to(device)

    # optimizer
    if cfg["novograd"]:
        optimizer = Novograd(model.parameters(), cfg["lr"])
    else:
        optimizer = SGD(model.parameters(), lr=cfg["lr"], momentum=0.9)

    # AMP scaler
    if cfg["amp"]:
        cfg["amp"] = True if monai.utils.get_torch_version_tuple() >= (
            1, 6) else False
    else:
        cfg["amp"] = False

    scheduler = lr_scheduler.CosineAnnealingLR(optimizer,
                                               T_max=cfg["n_epochs"])

    # --------------------------------------------
    # Ignite Trainer/Evaluator
    # --------------------------------------------
    # Evaluator
    val_handlers = [
        CheckpointSaver(save_dir=log_dir,
                        save_dict={"net": model},
                        save_key_metric=True),
        StatsHandler(output_transform=lambda x: None),
        TensorBoardStatsHandler(log_dir=log_dir,
                                output_transform=lambda x: None),
    ]
    val_postprocessing = Compose([
        ActivationsD(keys="pred", sigmoid=True),
        AsDiscreteD(keys="pred", threshold=0.5)
    ])
    evaluator = SupervisedEvaluator(
        device=device,
        val_data_loader=valid_dataloader,
        network=model,
        postprocessing=val_postprocessing,
        key_val_metric={
            "val_acc":
            Accuracy(output_transform=from_engine(["pred", "label"]))
        },
        val_handlers=val_handlers,
        amp=cfg["amp"],
    )

    # Trainer
    train_handlers = [
        LrScheduleHandler(lr_scheduler=scheduler, print_lr=True),
        CheckpointSaver(save_dir=cfg["logdir"],
                        save_dict={
                            "net": model,
                            "opt": optimizer
                        },
                        save_interval=1,
                        epoch_level=True),
        StatsHandler(tag_name="train_loss",
                     output_transform=from_engine(["loss"], first=True)),
        ValidationHandler(validator=evaluator, interval=1, epoch_level=True),
        TensorBoardStatsHandler(log_dir=cfg["logdir"],
                                tag_name="train_loss",
                                output_transform=from_engine(["loss"],
                                                             first=True)),
    ]
    train_postprocessing = Compose([
        ActivationsD(keys="pred", sigmoid=True),
        AsDiscreteD(keys="pred", threshold=0.5)
    ])

    trainer = SupervisedTrainer(
        device=device,
        max_epochs=cfg["n_epochs"],
        train_data_loader=train_dataloader,
        network=model,
        optimizer=optimizer,
        loss_function=loss_func,
        postprocessing=train_postprocessing,
        key_train_metric={
            "train_acc":
            Accuracy(output_transform=from_engine(["pred", "label"]))
        },
        train_handlers=train_handlers,
        amp=cfg["amp"],
    )
    trainer.run()
Example #8
0
 def optimizer(self, context: Context):
     return Novograd(context.network.parameters(), 0.0001)