Example #1
0
 def __init__(
     self,
     keys: KeysCollection,
     sigma: Union[Sequence[float], float],
     approx: str = "erf",
     allow_missing_keys: bool = False,
 ) -> None:
     super().__init__(keys, allow_missing_keys)
     self.converter = GaussianSmooth(sigma, approx=approx)
Example #2
0
 def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]:
     d = dict(data)
     self.randomize()
     if not self._do_transform:
         return d
     for key in self.keys:
         sigma = ensure_tuple_size(tup=(self.x, self.y, self.z), dim=d[key].ndim - 1)
         d[key] = GaussianSmooth(sigma=sigma, approx=self.approx)(d[key])
     return d
Example #3
0
 def __call__(self, data):
     d = dict(data)
     self.randomize()
     if not self._do_transform:
         return d
     for key in self.keys:
         sigma = ensure_tuple_size(tup=(self.x, self.y, self.z),
                                   dim=d[key].ndim - 1)
         d[key] = GaussianSmooth(sigma=sigma)(d[key])
     return d
Example #4
0
 def __init__(self, keys: KeysCollection, sigma: Union[Sequence[float],
                                                       float]):
     super().__init__(keys)
     self.converter = GaussianSmooth(sigma)