Example #1
0
 def test_nonzero(self):
     for p in TEST_NDARRAYS:
         image = p(np.asarray([[4.0, 0.0, 2.0], [0, 2, 4]]))  # std = 1
         factor = np.random.rand()
         std_shifter = StdShiftIntensity(factor=factor, nonzero=True)
         result = std_shifter(image)
         expected = p(np.asarray([[4 + factor, 0, 2 + factor], [0, 2 + factor, 4 + factor]], dtype=np.float32))
         torch.testing.assert_allclose(result, expected, atol=0, rtol=1e-5)
 def test_dtype(self):
     trans_dtype = np.float32
     for dtype in [int, np.float32, np.float64]:
         image = np.random.rand(2, 2, 2).astype(dtype)
         factor = np.random.rand()
         std_shifter = StdShiftIntensity(factor=factor, dtype=trans_dtype)
         result = std_shifter(image)
         np.testing.assert_equal(result.dtype, trans_dtype)
Example #3
0
 def test_nonzero(self):
     image = np.asarray([[4.0, 0.0, 2.0], [0, 2, 4]])  # std = 1
     factor = np.random.rand()
     std_shifter = StdShiftIntensity(factor=factor, nonzero=True)
     result = std_shifter(image)
     expected = np.asarray([[4 + factor, 0, 2 + factor],
                            [0, 2 + factor, 4 + factor]])
     np.testing.assert_equal(result, expected)
Example #4
0
 def test_value(self):
     factor = np.random.rand()
     offset = np.std(self.imt) * factor
     shifter = ShiftIntensity(offset=offset)
     expected = shifter(self.imt)
     std_shifter = StdShiftIntensity(factor=factor)
     result = std_shifter(self.imt)
     np.testing.assert_allclose(result, expected, rtol=1e-5)
Example #5
0
 def test_zerostd(self):
     for p in TEST_NDARRAYS:
         image = p(np.ones([2, 3, 3], dtype=np.float32))
         for nonzero in [True, False]:
             for channel_wise in [True, False]:
                 factor = np.random.rand()
                 std_shifter = StdShiftIntensity(factor=factor, nonzero=nonzero, channel_wise=channel_wise)
                 result = std_shifter(image)
                 torch.testing.assert_allclose(result, image, atol=0, rtol=1e-5)
 def test_value(self):
     for p in TEST_NDARRAYS:
         imt = p(self.imt)
         factor = np.random.rand()
         offset = np.std(self.imt) * factor
         shifter = ShiftIntensity(offset=offset)
         expected = shifter(imt)
         std_shifter = StdShiftIntensity(factor=factor)
         result = std_shifter(imt)
         torch.testing.assert_allclose(result, expected, atol=0, rtol=1e-5)
Example #7
0
 def test_channel_wise(self):
     for p in TEST_NDARRAYS:
         image = p(np.stack((np.asarray([1.0, 2.0]), np.asarray([1.0, 1.0]))))  # std: 0.5, 0
         factor = np.random.rand()
         std_shifter = StdShiftIntensity(factor=factor, channel_wise=True)
         result = std_shifter(image)
         expected = p(
             np.stack((np.asarray([1 + 0.5 * factor, 2 + 0.5 * factor]), np.asarray([1, 1]))).astype(np.float32)
         )
         torch.testing.assert_allclose(result, expected, atol=0, rtol=1e-5)
Example #8
0
 def test_channel_wise(self):
     image = np.stack(
         (np.asarray([1.0, 2.0]), np.asarray([1.0, 1.0])))  # std: 0.5, 0
     factor = np.random.rand()
     std_shifter = StdShiftIntensity(factor=factor, channel_wise=True)
     result = std_shifter(image)
     expected = np.stack((np.asarray([1 + 0.5 * factor,
                                      2 + 0.5 * factor]), np.asarray([1,
                                                                      1])))
     np.testing.assert_equal(result, expected)
Example #9
0
 def test_zerostd(self):
     image = np.ones([2, 3, 3])
     for nonzero in [True, False]:
         for channel_wise in [True, False]:
             factor = np.random.rand()
             std_shifter = StdShiftIntensity(factor=factor,
                                             nonzero=nonzero,
                                             channel_wise=channel_wise)
             result = std_shifter(image)
             np.testing.assert_equal(result, image)