Example #1
0
def number_density(job):
    dim = 1
    box_range = [0.5, 1.5]
    pore_center = (box_range[1] - box_range[0]) / 2 + box_range[0]
    o_densities = list()
    h_densities = list()
    fig, ax = plt.subplots()
    for trj in md.iterload(
            os.path.join(job.ws, "carbon_water-pos-1.pdb"),
            top=os.path.join(job.ws, "init.mol2"),
            chunk=5000,
            skip=6000,
    ):
        water_o = trj.atom_slice(trj.topology.select("name O"))
        water_h = trj.atom_slice(trj.topology.select("name H"))
        area = trj.unitcell_lengths[0][0] * trj.unitcell_lengths[0][2]

        for water_trj in (water_o, water_h):
            bins, density = compute_density(water_trj,
                                            area,
                                            dim,
                                            pore_center=pore_center,
                                            bin_width=0.01)
            label_name = list(set([i.name for i in water_trj.topology.atoms]))
            if label_name[0] == "O":
                o_densities.append(density)
            else:
                h_densities.append(density)

    o_mean = np.mean(o_densities, axis=0)
    h_mean = np.mean(h_densities, axis=0)
    o_std = np.std(o_densities, axis=0)
    h_std = np.std(h_densities, axis=0)

    plt.plot(bins, o_mean, label="O")
    plt.fill_between(bins, o_mean + o_std, o_mean - o_std, alpha=0.2)
    plt.plot(bins, h_mean, label="H")
    plt.fill_between(bins, h_mean + h_std, h_mean - h_std, alpha=0.2)
    plt.xlabel("z-position (nm)")
    plt.ylabel("Number Density ($nm^-3$)")

    plt.legend()
    with job:
        np.savetxt(
            project.root_directory() +
            "/data/{}/o_density.txt".format(str(job.sp.nwater) + "water_data"),
            np.transpose(np.vstack([bins, o_mean, o_std])),
            header="Bins\tDensity_mean\tDensity_std",
        )

        np.savetxt(
            project.root_directory() +
            "/data/{}/h_density.txt".format(str(job.sp.nwater) + "water_data"),
            np.transpose(np.vstack([bins, h_mean, h_std])),
            header="Bins\tDensity_mean\tDensity_std",
        )
        plt.savefig(project.root_directory() +
                    "/data/{}/numberdensity.pdf".format(
                        str(job.sp.nwater) + "water_data"))
Example #2
0
def number_density(job):
    dim = 1
    box_range = [0.837, 2.837]
    pore_center = (box_range[1] - box_range[0]) / 2 + box_range[0]
    o_densities = list()
    h_densities = list()
    fig, ax = plt.subplots()
    for trj in md.iterload(os.path.join(job.ws, 'nvt.dcd'),
                           top=os.path.join(job.ws, 'init.gro'),
                           chunk=1000,
                           skip=5001):
        water_o = trj.atom_slice(trj.topology.select('name O'))
        water_h = trj.atom_slice(trj.topology.select('name H'))
        area = trj.unitcell_lengths[0][0] * trj.unitcell_lengths[0][2]

        for water_trj in (water_o, water_h):
            bins, density = compute_density(water_trj,
                                            area,
                                            dim,
                                            pore_center=pore_center,
                                            bin_width=0.01)
            label_name = list(set([i.name for i in water_trj.topology.atoms]))
            if label_name[0] == 'O':
                o_densities.append(density)
            else:
                h_densities.append(density)

    o_mean = np.mean(o_densities, axis=0)
    h_mean = np.mean(h_densities, axis=0)
    o_std = np.std(o_densities, axis=0)
    h_std = np.std(h_densities, axis=0)

    plt.plot(bins, o_mean, label='O')
    plt.fill_between(bins, o_mean + o_std, o_mean - o_std, alpha=0.2)
    plt.plot(bins, h_mean, label='H')
    plt.fill_between(bins, h_mean + h_std, h_mean - h_std, alpha=0.2)
    plt.xlabel('z-position (nm)')
    plt.ylabel('Number Density ($nm^-3$)')

    plt.legend()
    with job:
        np.savetxt('o_density.txt',
                   np.transpose(np.vstack([bins, o_mean, o_std])),
                   header='Bins\tDensity_mean\tDensity_std')

        np.savetxt('h_density.txt',
                   np.transpose(np.vstack([bins, h_mean, h_std])),
                   header='Bins\tDensity_mean\tDensity_std')
        plt.savefig('numberdensity.pdf')

    np.savetxt(f'data/{job.sp.nwater}_mol_o_density.txt',
               np.transpose(np.vstack([bins, o_mean, o_std])),
               header='Bins\tDensity_mean\tDensity_std')

    np.savetxt(f'data/{job.sp.nwater}_mol_h_density.txt',
               np.transpose(np.vstack([bins, h_mean, h_std])),
               header='Bins\tDensity_mean\tDensity_std')
Example #3
0
def number_density(job, symmetrize=False):
    dim = 1
    box_range = [0.167, 1.167]
    pore_center = (box_range[1] - box_range[0]) / 2 + box_range[0]
    o_densities = list()
    h_densities = list()
    fig, ax = plt.subplots()
    if job.sp.nwater == 1:
        skip = 1
    else:
        skip = 5001
    for trj in md.iterload(
            os.path.join(job.ws, "nvt.trr"),
            top=os.path.join(job.ws, "nvt.gro"),
            chunk=5000,
            skip=skip,
    ):
        water_o = trj.atom_slice(trj.topology.select("name O"))
        water_h = trj.atom_slice(trj.topology.select("name H"))
        area = trj.unitcell_lengths[0][0] * trj.unitcell_lengths[0][2]

        for water_trj in (water_o, water_h):
            bins, density = compute_density(
                water_trj,
                area,
                dim,
                pore_center=pore_center,
                bin_width=0.01,
                symmetrize=symmetrize,
            )
            label_name = list(set([i.name for i in water_trj.topology.atoms]))
            if label_name[0] == "O":
                o_densities.append(density)
            else:
                h_densities.append(density)

    o_mean = np.mean(o_densities, axis=0)
    h_mean = np.mean(h_densities, axis=0)
    o_std = np.std(o_densities, axis=0)
    h_std = np.std(h_densities, axis=0)

    plt.plot(bins, o_mean, label="O")
    plt.fill_between(bins, o_mean + o_std, o_mean - o_std, alpha=0.2)
    plt.plot(bins, h_mean, label="H")
    plt.fill_between(bins, h_mean + h_std, h_mean - h_std, alpha=0.2)
    plt.xlabel("z-position (nm)")
    plt.ylabel("Number Density ($nm^-3$)")

    plt.legend()
    if symmetrize == True:
        extension = "_symmetrize"
    else:
        extension = ""
    with job:
        np.savetxt(
            f"o_density{extension}.txt",
            np.transpose(np.vstack([bins, o_mean, o_std])),
            header="Bins\tDensity_mean\tDensity_std",
        )

        np.savetxt(
            f"h_density{extension}.txt",
            np.transpose(np.vstack([bins, h_mean, h_std])),
            header="Bins\tDensity_mean\tDensity_std",
        )
        plt.savefig(f"numberdensity{extension}.pdf")
    np.savetxt(
        f"data/{job.sp.nwater}_mol_o_density{extension}.txt",
        np.transpose(np.vstack([bins, o_mean, o_std])),
        header="Bins\tDensity_mean\tDensity_std",
    )

    np.savetxt(
        f"data/{job.sp.nwater}_mol_h_density{extension}.txt",
        np.transpose(np.vstack([bins, h_mean, h_std])),
        header="Bins\tDensity_mean\tDensity_std",
    )
Example #4
0
def main():

    project = signac.get_project("../")

    for nwater, group in project.groupby("nwater"):
        # New dataframe to save the results
        df = pd.DataFrame()

        # Create pore system
        pore_width = 1.0 * u.nm

        filled_pore = mbuild.recipes.GraphenePoreSolvent(
            pore_length=1.0,
            pore_depth=1.1,
            pore_width=pore_width.to_value("nm"),
            n_sheets=1,
            slit_pore_dim=2,
            x_bulk=0,
            solvent=spce_water,
            n_solvent=nwater,
        )
        # Translate to centered at 0,0,0 and make box larger in z
        box_center = filled_pore.periodicity / 2.0
        filled_pore.translate(-box_center)
        filled_pore.periodicity[2] = 2.0

        xy_area = filled_pore.periodicity[0] * filled_pore.periodicity[1]
        top = filled_pore.to_trajectory(residues=["RES", "SOL"])

        # Load all trajectories and combine
        for job in group:
            run = job.sp.run
            # Load in full trajectory
            full_traj = md.load(job.fn("prod.nvt.out.xyz"), top=top)
            # Add unit cell information
            full_traj = md.Trajectory(
                full_traj.xyz,
                full_traj.top,
                unitcell_lengths=np.tile(filled_pore.periodicity,
                                         (full_traj.n_frames, 1)),
                unitcell_angles=np.tile([90., 90., 90.],
                                        (full_traj.n_frames, 1)),
            )
            # Keep only water
            slice_water = full_traj.top.select("water and name O H")
            traj = full_traj.atom_slice(slice_water)
            slice_ow = traj.top.select("name O")
            slice_hw = traj.top.select("name H")
            traj_ow = traj.atom_slice(slice_ow)
            traj_hw = traj.atom_slice(slice_hw)

            # Compute the density
            bin_centers_ow, density_ow = compute_density(traj_ow,
                                                         xy_area,
                                                         bin_width=0.005)
            bin_centers_hw, density_hw = compute_density(traj_hw,
                                                         xy_area,
                                                         bin_width=0.005)

            # Compute the s order parameter
            bin_centers_s, s_results = compute_s(traj, bin_width=0.005)

            assert np.allclose(bin_centers_ow, bin_centers_hw)
            assert np.allclose(bin_centers_ow, bin_centers_s)

            # Save results
            tmp_df = pd.DataFrame()
            tmp_df[f"run"] = run
            tmp_df[f"z-loc_nm"] = bin_centers_ow
            tmp_df[f"density-ow_nm^-3"] = density_ow
            tmp_df[f"density-hw_nm^-3"] = density_hw
            tmp_df[f"s_value"] = s_results
            df = df.append(tmp_df)

        # Compute mean/stdev and save to file
        means = df.groupby("z-loc_nm").mean().drop(
            columns=["run"]).add_suffix("_mean")
        stds = df.groupby("z-loc_nm").std().drop(
            columns=["run"]).add_suffix("_std")
        combined = means.merge(stds, on="z-loc_nm")
        combined.to_csv(f"results_{nwater}-water.csv")