def get_parser(): parser = argparse.ArgumentParser() subparsers = parser.add_subparsers(title='Models trainer script', description='available models') for model in MODELS.get_model_names(): add_train_args( MODELS.get_model_train_parser(model)(subparsers.add_parser(model))) return parser
def get_parser(): parser = add_train_args(organ_parser()) parser.add_argument( '--n_ref_subsample', type=int, default=500, help='Number of reference molecules (sampling from training data)') parser.add_argument('--addition_rewards', nargs='+', type=str, choices=MetricsReward.supported_metrics, default=[], help='Adding of addition rewards') # conditional generation parser.add_argument('--conditional', type=int, default=0, help='Conditional generation mode') parser.add_argument('--output_size', type=int, default=10, help='Output size in the condition linear layer') return parser
def get_parser(): parser = add_train_args(vae_parser()) # conditional generation parser.add_argument('--conditional', type=int, default=0, help='Conditional generation mode') parser.add_argument('--output_size', type=int, default=10, help='Output size in the condition linear layer') return parser
def get_parser(): parser = add_train_args(organ_parser()) parser.add_argument( '--n_ref_subsample', type=int, default=500, help='Number of reference molecules (sampling from training data)') parser.add_argument('--addition_rewards', nargs='+', type=str, choices=MetricsReward.supported_metrics, default=[], help='Adding of addition rewards') return parser
def get_parser(): return add_train_args(vae_parser())
def get_parser(): parser = argparse.ArgumentParser() subparsers = parser.add_subparsers( title='Models trainer script', description='available models' ) for model in MODELS.get_model_names(): add_train_args( MODELS.get_model_train_parser(model)( subparsers.add_parser(model) ) ) parser.add_argument('--model', type=str, default='all', choices=['all'] + MODELS.get_model_names(), help='Which model to run') parser.add_argument('--test_path', type=str, required=False, help='Path to test molecules csv') parser.add_argument('--test_scaffolds_path', type=str, required=False, help='Path to scaffold test molecules csv') parser.add_argument('--train_path', type=str, required=False, help='Path to train molecules csv') parser.add_argument('--ptest_path', type=str, required=False, help='Path to precalculated test npz') parser.add_argument('--ptest_scaffolds_path', type=str, required=False, help='Path to precalculated scaffold test npz') parser.add_argument('--checkpoint_dir', type=str, default='./checkpoints', help='Directory for checkpoints') parser.add_argument('--n_samples', type=int, default=30000, help='Number of samples to sample') parser.add_argument('--n_jobs', type=int, default=1, help='Number of threads') parser.add_argument('--device', type=str, default='cpu', help='GPU device index in form `cuda:N` (or `cpu`)') parser.add_argument('--metrics', type=str, default='metrics.csv', help='Path to output file with metrics') parser.add_argument('--train_size', type=int, default=None, help='Size of training dataset') parser.add_argument('--test_size', type=int, default=None, help='Size of testing dataset') parser.add_argument('--experiment_suff', type=str, default='', help='Experiment suffix to break ambiguity') # Model model_arg = parser.add_argument_group('Model') model_arg.add_argument('--q_cell', type=str, default='gru', choices=['gru'], help='Encoder rnn cell type') model_arg.add_argument('--q_bidir', default=False, action='store_true', help='If to add second direction to encoder') model_arg.add_argument('--q_d_h', type=int, default=256, help='Encoder h dimensionality') model_arg.add_argument('--q_n_layers', type=int, default=1, help='Encoder number of layers') model_arg.add_argument('--q_dropout', type=float, default=0.5, help='Encoder layers dropout') model_arg.add_argument('--d_cell', type=str, default='gru', choices=['gru'], help='Decoder rnn cell type') model_arg.add_argument('--d_n_layers', type=int, default=3, help='Decoder number of layers') model_arg.add_argument('--d_dropout', type=float, default=0, help='Decoder layers dropout') model_arg.add_argument('--d_z', type=int, default=128, help='Latent vector dimensionality') model_arg.add_argument('--d_d_h', type=int, default=512, help='Decoder hidden dimensionality') model_arg.add_argument('--freeze_embeddings', default=False, action='store_true', help='If to freeze embeddings while training') # Train train_arg = parser.add_argument_group('Train') train_arg.add_argument('--n_batch', type=int, default=512, help='Batch size') train_arg.add_argument('--clip_grad', type=int, default=50, help='Clip gradients to this value') train_arg.add_argument('--kl_start', type=int, default=0, help='Epoch to start change kl weight from') train_arg.add_argument('--kl_w_start', type=float, default=0, help='Initial kl weight value') train_arg.add_argument('--kl_w_end', type=float, default=0.05, help='Maximum kl weight value') train_arg.add_argument('--lr_start', type=float, default=3 * 1e-4, help='Initial lr value') train_arg.add_argument('--lr_n_period', type=int, default=10, help='Epochs before first restart in SGDR') train_arg.add_argument('--lr_n_restarts', type=int, default=10, help='Number of restarts in SGDR') train_arg.add_argument('--lr_n_mult', type=int, default=1, help='Mult coefficient after restart in SGDR') train_arg.add_argument('--lr_end', type=float, default=3 * 1e-4, help='Maximum lr weight value') train_arg.add_argument('--n_last', type=int, default=1000, help='Number of iters to smooth loss calc') train_arg.add_argument('--n_workers', type=int, default=1, help='Number of workers for DataLoaders') return parser
def get_parser(): return add_train_args(char_rnn_parser())
def get_parser(): return add_train_args(junction_tree_parser())