def add_sensor_data(self, name, amplitude, noise_amp, delta_t, max_t,
                        run_ave, trigger_value):
        """
        Simulate a sensor and collect data with various parameters
            amplitude, noise_amp, delta_t, max_t, run_ave,
            trigger_value  sets the trigger level for time, data not saved untill trigger value is reached
        """
        # make a simulated sensor
        sensor = ss.SensorSim(amplitude, noise_amp, delta_t=delta_t)

        data0 = []
        data1 = []
        x0 = 0.

        if trigger_value > 0:
            trigger = dt.DataTrigger(trigger_value)

        if run_ave > 0:
            averager = moving_average.MovingAverage(run_ave)

        while x0 < max_t:

            x0, x1 = sensor.get_next_sample()
            if run_ave > 0:
                x1 = averager.nextVal(x1)
            add_flag = True
            if trigger_value > 0:
                add_flag = trigger.need_save(x0)

            if add_flag:
                data0.append(x0)
                data1.append(x1)

        self.add_line(name, data0, data1)
Example #2
0
    def test_validation(self):
        # check illegal characters in list
        with self.assertRaises(TypeError):
            data = [1, 2, 3, 'a']
            ma.MovingAverage(data)

        # check negative values
        with self.assertRaises(ValueError):
            data = [1, 2, -3, 0]
            ma.MovingAverage(data, allow_negative_values=False)

        try:
            data = [1, 2, -3, 0]
            ma.MovingAverage(data, allow_negative_values=True)
        except ValueError:
            self.fail()

        # check empty values in list
        with self.assertRaises(Exception):
            data = [1, 2, 3, '']
            ma.MovingAverage(data)

            data = [1, 2, 3, None]
            ma.MovingAverage(data)

        # check enough elements to calculate moving average
        with self.assertRaises(Exception):
            data = []
            ma.MovingAverage(data)

            data = [1, 2, 3, 4]
            ma.MovingAverage(data, window=5)
Example #3
0
    def test_calculation(self):
        test_data = [10, 10, 10, 10]
        moving_average = ma.MovingAverage(test_data).get_data()
        ma_list = moving_average.replace(np.nan, '').tolist()
        result = ['', 10.0, 10.0, 10.0]
        self.assertListEqual(ma_list, result)

        test_data = [0, 10, 5, -4, 8, 16]
        moving_average = ma.MovingAverage(
            test_data, window=3, allow_negative_values=True).get_data()
        ma_list = moving_average.replace(np.nan, '').tolist()
        result = ['', '', 5.0, 11 / 3, 3.0, 20 / 3]
        self.assertListEqual(ma_list, result)

        test_data = [0, 12, 40, 671, 4, -531]
        moving_average = ma.MovingAverage(
            test_data, window=6, allow_negative_values=True).get_data()
        ma_list = moving_average.replace(np.nan, '').tolist()
        result = ['', '', '', '', '', sum(test_data) / len(test_data)]
        self.assertListEqual(ma_list, result)
import csv
import japanize_matplotlib

import pandas as pd
import matplotlib.pyplot as plt

import moving_average as ma

#Analitics Weather data
#Tokyo
titile = 'TOKYO'

data1990 = pd.read_csv('data/Tokyo_1990 - Tokyo1990.csv')
temp_rolling1 = ma.MovingAverage(data1990['temp'])
vap_pressure_rolling1 = ma.MovingAverage(data1990['vap_pressure'])
humidity_rolling1 = ma.MovingAverage(data1990['humidity'])

data1995 = pd.read_csv('data/Tokyo1995.csv')
temp_rolling1 = ma.MovingAverage(data1995['temp'])
vap_pressure_rolling1 = ma.MovingAverage(data1995['vap_pressure'])
humidity_rolling1 = ma.MovingAverage(data1995['humidity'])

data2000 = pd.read_csv('data/Tokyo_2000 - Tokyo2000.csv')
temp_rolling2 = ma.MovingAverage(data2000['temp'])
vap_pressure_rolling2 = ma.MovingAverage(data2000['vap_pressure'])
humidity_rolling2 = ma.MovingAverage(data2000['humidity'])

data2005 = pd.read_csv('data/Tokyo_2005.csv')
temp_rolling2 = ma.MovingAverage(data2005['temp'])
vap_pressure_rolling2 = ma.MovingAverage(data2005['vap_pressure'])
humidity_rolling2 = ma.MovingAverage(data2005['humidity'])