Example #1
0
nqueries = []
nweights = []

for i in range(num_exp):
    print('current exp: {}'.format(i))
    query = oqueries[i, :]
    weight = oweights[i, :]
    start = ostarts[i, :]
    goal = ogoals[i, :]
    st, _ = env.reset(init_ball_pos=INIT_BALL_POS, target_pos=query)

    env.high_ctrl.target_quat = st[3:]
    env.high_ctrl.target_posi = st[:3]
    env.high_ctrl.desired_joints = np.array([0, -0.2, 0, 0, 1.8, 3.14, 0, 0])

    vmp.set_weights(weight)
    vmp.set_start_goal(start, INIT_BALL_POS[:2])
    final_ball_pos, _, _, is_error = env.run()
    if is_error or final_ball_pos[1] < 2.0:
        print('error .... ')
        print('final_ball_pos: {}'.format(final_ball_pos[1]))
        is_error = True

    if not is_error and np.linalg.norm(query - final_ball_pos[:2]) < 0.08:
        success_rate = success_rate + 1

    if not is_error:
        nstarts.append(start)
        ngoals.append(INIT_BALL_POS[:2])
        nqueries.append(final_ball_pos[:2])
        nweights.append(weight)
Example #2
0
        mdnmp.train(train_goals,
                    train_ws,
                    train_ispos,
                    max_epochs=5000,
                    is_load=False,
                    is_save=False)
        wout, outdict = mdnmp.predict(testgoals, n_samples=n_samples)

        idx = outdict['compIDs'].astype(int)
        axes[expID, kid].clear()
        axes[expID, kid].set_ylim([-2, 2])
        axes[expID, kid].set_xlim([-2.5, 2.5])
        obs.plot(axes[expID, kid])

        for i in range(np.shape(vmps)[0]):
            vmp.set_weights(vmps[i, :])
            traj = vmp.roll(start, goals[i, :])
            axes[expID, kid].plot(goals[i, 0], goals[i, 1], 'ko')
            axes[expID, kid].plot(traj[:, 1],
                                  traj[:, 2],
                                  'k-.',
                                  linewidth=2,
                                  alpha=0.7)

        print('the selected modes for 5 samples are {}'.format(idx))
        print('probability for different modes: {}'.format(outdict['mc']))
        for i in range(np.shape(wout)[0]):
            cgoals = testgoals[i, :]
            for j in range(n_samples):
                vmp.set_weights(wout[i, j, :])
                traj = vmp.roll(start, cgoals)
gmgan = GMGAN(n_comps=2, context_dim=2, response_dim=20,  nn_structure=nn_structure)

gmgan.lratio['entropy'] = 100
gmgan.gen_sup_lrate = 0.00005
gmgan.gen_adv_lrate = 0.0002
gmgan.dis_lrate = 0.0002
gmgan.entropy_ratio = 0.0
gmgan.sup_max_epoch = 5000
gmgan.create_network(num_real_data=n_data)
gmgan.init_train()

train_input = np.random.uniform(low=np.min(train_goals, axis=0), high=np.max(train_goals, axis=0),
                                size=(1000, np.shape(train_goals)[1]))
gmgan.train(train_context=train_input, real_context=train_goals, real_response=train_ws, max_epochs=10000, is_load=False, is_save=False)

wout, _ = gmgan.predict(testgoals)
axe.set_ylim([-2, 2])
axe.set_xlim([-2.5, 2.5])
obs.plot(axe)
for k in range(np.shape(wout)[0]):
    cgoals = testgoals[k, :]
    vmp.set_weights(wout[k,0,:])
    traj = vmp.roll(start, cgoals)
    axe.plot(traj[:, 1], traj[:, 2], '-', color='r', linewidth=2)
    axe.plot(cgoals[0], cgoals[1], 'bo')

plt.draw()
plt.show()

Example #4
0
def evaluate_docking_for_all_models(mpweights,
                                    mfs,
                                    testqueries,
                                    teststarts,
                                    testgoals,
                                    knum=10,
                                    ndraw=4):
    ndata = np.shape(mpweights)[0]
    vmp = VMP(2, kernel_num=knum)
    obsExp = ObsExp(exp_name="Docking")
    envs = obsExp.get_envs(testqueries)

    fig, axes = plt.subplots(nrows=ndraw, ncols=ndraw)
    colors = [(232 / 255, 82 / 255, 88 / 255, 1),
              (1 / 255, 129 / 255, 1 / 255, 1),
              (4 / 255, 129 / 255, 205 / 255, 1)
              ]  #cmap(np.linspace(0,1,nmodel))

    k = 0
    for i in range(ndata):
        ws = mpweights[i, :, :]
        iscollision = False
        for j in range(np.shape(ws)[1]):
            start = teststarts[i, :]
            goal = testgoals[i, :]
            env = envs[i]
            mf = mfs[i, :]
            vmp.set_weights(ws[:, np.argmax(mf)])
            traj = vmp.roll(start, goal)

            if np.linalg.norm(traj[0, 1:] -
                              start) > 1 or np.linalg.norm(traj[-1, 1:] -
                                                           goal) > 1:
                iscollision = True
                continue

            if np.linalg.norm(testqueries[i, 0:2] -
                              start) > 1 or np.linalg.norm(
                                  testqueries[i, 3:5] - goal) > 1:
                iscollision = True
                continue

            for j in range(np.shape(traj)[0]):
                iscollision = env.isCollision([traj[j, 1], traj[j, 2]])
                if iscollision:
                    break

        if not iscollision and k < ndraw * ndraw:
            ax = int(np.floor(k / ndraw))
            ay = int(k % ndraw)
            axes[ax, ay].clear()
            axes[ax, ay].set_ylim([-5, 25])
            axes[ax, ay].set_xlim([-5, 25])
            axes[ax, ay].set_yticklabels([])
            axes[ax, ay].set_xticklabels([])
            axes[ax, ay].set_aspect('equal')
            axes[ax, ay].tick_params(length=0)
            env.plot(axes[ax, ay])

            axes[ax, ay].plot(traj[0, 1], traj[0, 2], 'k.')
            axes[ax, ay].plot(traj[-1, 1], traj[-1, 2], 'k.')

            for mid in range(len(mf)):
                vmp.set_weights(ws[:, mid])
                traj = vmp.roll(start, goal)
                if mid == np.argmax(mf):
                    axes[ax, ay].plot(traj[:, 1],
                                      traj[:, 2],
                                      '-',
                                      color=colors[mid],
                                      linewidth=2)
                else:
                    axes[ax, ay].plot(traj[:, 1],
                                      traj[:, 2],
                                      '-.',
                                      color=colors[mid],
                                      linewidth=2)

            k = k + 1

    plt.subplots_adjust(hspace=0.05, wspace=0.05)
    plt.draw()
    plt.pause(0.001)
    plt.savefig('./docking_img.png')
Example #5
0
def evaluate_docking(mpweights,
                     testqueries,
                     teststarts,
                     testgoals,
                     knum=10,
                     mua=None,
                     isdraw=False,
                     ndraw=3,
                     onlySuccess=True):
    # mpweights: N x S x dim, N: number of experiments, S: number of samples, dim: dimension of MP
    # testqueries: N x qdim, N: number of experiments, qdim: dimension of queries
    # teststarts: N x 2
    # testgoals: N x 2
    success_num = 0
    ndata = np.shape(mpweights)[0]

    vmp = VMP(2, kernel_num=knum)

    obsExp = ObsExp(exp_name="Docking")
    envs = obsExp.get_envs(testqueries)

    k = 0
    if isdraw:
        if not onlySuccess:
            ids = np.random.choice(ndata, ndraw * ndraw, replace=False)
        else:
            ids = np.linspace(0, ndata, ndata)

        fig, axes = plt.subplots(nrows=ndraw, ncols=ndraw)

    successId = []
    colors = [(232 / 255, 82 / 255, 88 / 255, 0.5),
              (1 / 255, 129 / 255, 1 / 255, 0.5),
              (4 / 255, 129 / 255, 205 / 255, 0.5)]

    for i in range(ndata):
        w = mpweights[i, :]

        for j in range(np.shape(w)[0]):
            vmp.set_weights(w[j, :])
            start = teststarts[i, :]
            goal = testgoals[i, :]
            env = envs[i]
            traj = vmp.roll(start, goal)
            iscollision = False

            if np.linalg.norm(traj[0, 1:] -
                              start) > 1 or np.linalg.norm(traj[-1, 1:] -
                                                           goal) > 1:
                iscollision = True
                continue

            for j in range(np.shape(traj)[0]):
                iscollision = env.isCollision([traj[j, 1], traj[j, 2]])
                if iscollision:
                    break

            if not iscollision:
                success_num = success_num + 1
                successId.append(i)
                break

        if isdraw:
            if k < ndraw * ndraw:
                if not onlySuccess or not iscollision:
                    ax = int(np.floor(k / ndraw))
                    ay = int(k % ndraw)
                    axes[ax, ay].clear()
                    axes[ax, ay].set_ylim([-5, 25])
                    axes[ax, ay].set_xlim([-5, 25])
                    axes[ax, ay].set_yticklabels([])
                    axes[ax, ay].set_xticklabels([])
                    axes[ax, ay].set_aspect('equal')
                    axes[ax, ay].tick_params(length=0)
                    # axes[ax, ay].axhline(linewidth=2)
                    # axes[ax, ay].axvline(linewidth=2)
                    env.plot(axes[ax, ay])

                    axes[ax, ay].plot(start[0], start[1], 'r.')
                    axes[ax, ay].plot(goal[0], goal[1], 'b.')
                    axes[ax, ay].plot(traj[:, 1],
                                      traj[:, 2],
                                      'k-',
                                      linewidth=2)

                    if mua is not None:
                        for mid in range(np.shape(mua)[2]):
                            vmp.set_weights(mua[i, :, mid])
                            traj = vmp.roll(start, goal)
                            axes[ax, ay].plot(traj[:, 1],
                                              traj[:, 2],
                                              '-.',
                                              color=colors[mid],
                                              linewidth=2)

                    k = k + 1

    print('success_num: %1d, ndata: %1d, success_rate: %.3f' %
          (success_num, ndata, success_num / ndata))
    if isdraw:
        plt.subplots_adjust(hspace=0.05, wspace=0.05)
        plt.draw()
        plt.pause(0.001)
        plt.savefig('./docking.png', format='png', dpi=1200)

    return success_num / ndata, successId
Example #6
0
def evaluate_circular_obstacle_avoidance(mpweights,
                                         testqueries,
                                         teststarts,
                                         testgoals,
                                         knum=10,
                                         isdraw=False,
                                         ndraw=4,
                                         onlySuccess=False):
    # mpweights: N x dim, N: number of experiments, dim: dimension of MP
    # testqueries: N x qdim, N: number of experiments, qdim: dimension of queries
    # teststarts: N x 2
    # testgoals: N x 2

    success_num = 0
    ndata = np.shape(mpweights)[0]

    vmp = VMP(2, kernel_num=knum)

    obsExp = ObsExp(exp_name="goAroundObsR3V2")
    envs = obsExp.get_envs(testqueries)

    k = 0
    if isdraw:
        if not onlySuccess:
            ids = np.random.choice(ndata, ndraw * ndraw, replace=False)
        else:
            ids = np.linspace(0, ndata, ndata)

        fig, axes = plt.subplots(nrows=ndraw, ncols=ndraw)

    for i in range(ndata):
        w = mpweights[i, :]
        vmp.set_weights(w)
        start = teststarts[i, :]
        goal = testgoals[i, :]
        env = envs[i]
        traj = vmp.roll(start, goal)

        iscollision = False
        for j in range(np.shape(traj)[0]):
            iscollision = env.isCollision([traj[j, 1], traj[j, 2]])
            if iscollision:
                break

        if not iscollision:
            success_num = success_num + 1

        if isdraw:
            if i in ids:
                if not onlySuccess or not iscollision:
                    ax = int(np.floor(k / ndraw))
                    ay = int(k % ndraw)
                    axes[ax, ay].clear()
                    axes[ax, ay].set_ylim([-10, 10])
                    axes[ax, ay].set_xlim([-10, 10])
                    axes[ax, ay].set_yticklabels([])
                    axes[ax, ay].set_xticklabels([])
                    env.plot(axes[ax, ay])
                    k = k + 1

                    if iscollision:
                        axes[ax, ay].plot(traj[:, 1],
                                          traj[:, 2],
                                          '-.',
                                          color='r')
                    else:
                        axes[ax, ay].plot(traj[:, 1],
                                          traj[:, 2],
                                          '-',
                                          color='b')

                    axes[ax, ay].plot(start[0], start[1], 'ro')
                    axes[ax, ay].plot(goal[0], goal[1], 'bo')

    print('success_num: {}, ndata: {}'.format(success_num, ndata))
    if isdraw:
        plt.show()

    return success_num / ndata