def main( data_df,model_df, start=0,end=None,err=False,coarse_graining_level=0): dicttype, modeltype = qc.get_model_type(model_df) seq_cols = qc.get_cols_from_df(data_df,'seqs') if not len(seq_cols)==1: raise SortSeqError('Dataframe has multiple seq cols: %s'%str(seq_cols)) seq_dict,inv_dict = utils.choose_dict(dicttype,modeltype=modeltype) #set name of sequences column based on type of sequence type_name_dict = {'dna':'seq','rna':'seq_rna','protein':'seq_pro'} seq_col_name = type_name_dict[dicttype] #Cut the sequences based on start and end, and then check if it makes sense if (start != 0 or end): data_df.loc[:,seq_col_name] = data_df.loc[:,seq_col_name].str.slice(start,end) if modeltype=='MAT': if len(data_df.loc[0,seq_col_name]) != len(model_df.loc[:,'pos']): raise SortSeqError('model length does not match dataset length') elif modeltype=='NBR': if len(data_df.loc[0,seq_col_name]) != len(model_df.loc[:,'pos'])+1: raise SortSeqError('model length does not match dataset length') col_headers = utils.get_column_headers(data_df) if 'ct' not in data_df.columns: data_df['ct'] = data_df[col_headers].sum(axis=1) data_df = data_df[data_df.ct != 0] if not end: seqL = len(data_df[seq_col_name][0]) - start else: seqL = end-start data_df = data_df[data_df[seq_col_name].apply(len) == (seqL)] #make a numpy array out of the model data frame model_df_headers = ['val_' + str(inv_dict[i]) for i in range(len(seq_dict))] value = np.transpose(np.array(model_df[model_df_headers])) #now we evaluate the expression of each sequence according to the model. seq_mat,wtrow = numerics.dataset2mutarray(data_df.copy(),modeltype) temp_df = data_df.copy() temp_df['val'] = numerics.eval_modelmatrix_on_mutarray(np.array(model_df[model_df_headers]),seq_mat,wtrow) temp_sorted = temp_df.sort_values(by='val') temp_sorted.reset_index(inplace=True,drop=True) #we must divide by the total number of counts in each bin for the MI calculator #temp_sorted[col_headers] = temp_sorted[col_headers].div(temp_sorted['ct'],axis=0) MI = EstimateMutualInfoforMImax.alt4(temp_sorted,coarse_graining_level=coarse_graining_level) if not err: Std = np.NaN else: data_df_for_sub = data_df.copy() sub_MI = np.zeros(15) for i in range(15): sub_df = data_df_for_sub.sample(int(len(data_df_for_sub.index)/2)) sub_df.reset_index(inplace=True,drop=True) sub_MI[i],sub_std = main( sub_df,model_df,err=False) Std = np.std(sub_MI)/np.sqrt(2) return MI,Std
def main(df,lm='IM',modeltype='MAT',LS_means_std=None,\ db=None,iteration=30000,burnin=1000,thin=10,\ runnum=0,initialize='LS',start=0,end=None,foreground=1,\ background=0,alpha=0,pseudocounts=1,test=False,drop_library=False,\ verbose=False): # Determine dictionary seq_cols = qc.get_cols_from_df(df,'seqs') if not len(seq_cols)==1: raise SortSeqError('Dataframe has multiple seq cols: %s'%str(seq_cols)) dicttype = qc.colname_to_seqtype_dict[seq_cols[0]] seq_dict,inv_dict = utils.choose_dict(dicttype,modeltype=modeltype) '''Check to make sure the chosen dictionary type correctly describes the sequences. An issue with this test is that if you have DNA sequence but choose a protein dictionary, you will still pass this test bc A,C, G,T are also valid amino acids''' #set name of sequences column based on type of sequence type_name_dict = {'dna':'seq','rna':'seq_rna','protein':'seq_pro'} seq_col_name = type_name_dict[dicttype] lin_seq_dict,lin_inv_dict = utils.choose_dict(dicttype,modeltype='MAT') #wtseq = utils.profile_counts(df.copy(),dicttype,return_wtseq=True,start=start,end=end) #wt_seq_dict_list = [{inv_dict[np.mod(i+1+seq_dict[w],len(seq_dict))]:i for i in range(len(seq_dict)-1)} for w in wtseq] par_seq_dict = {v:k for v,k in seq_dict.items() if k != (len(seq_dict)-1)} #drop any rows with ct = 0 df = df[df.loc[:,'ct'] != 0] df.reset_index(drop=True,inplace=True) #If there are sequences of different lengths, then print error but continue if len(set(df[seq_col_name].apply(len))) > 1: sys.stderr.write('Lengths of all sequences are not the same!') #select target sequence region df.loc[:,seq_col_name] = df.loc[:,seq_col_name].str.slice(start,end) df = utils.collapse_further(df) col_headers = utils.get_column_headers(df) #make sure all counts are ints df[col_headers] = df[col_headers].astype(int) #create vector of column names val_cols = ['val_' + inv_dict[i] for i in range(len(seq_dict))] df.reset_index(inplace=True,drop=True) #Drop any sequences with incorrect length if not end: '''is no value for end of sequence was supplied, assume first seq is correct length''' seqL = len(df[seq_col_name][0]) - start else: seqL = end-start df = df[df[seq_col_name].apply(len) == (seqL)] df.reset_index(inplace=True,drop=True) #Do something different for each type of learning method (lm) if lm == 'ER': emat = Berg_von_Hippel( df,dicttype,foreground=foreground,background=background, pseudocounts=pseudocounts) if lm == 'LS': '''First check that is we don't have a penalty for ridge regression, that we at least have all possible base values so that the analysis will not fail''' if LS_means_std: #If user supplied preset means and std for each bin means_std_df = io.load_meanstd(LS_means_std) #change bin number to 'ct_number' and then use as index labels = list(means_std_df['bin'].apply(add_label)) std = means_std_df['std'] std.index = labels #Change Weighting of each sequence by dividing counts by bin std df[labels] = df[labels].div(std) means = means_std_df['mean'] means.index = labels else: means = None #drop all rows without counts df['ct'] = df[col_headers].sum(axis=1) df = df[df.ct != 0] df.reset_index(inplace=True,drop=True) ''' For sort-seq experiments, bin_0 is library only and isn't the lowest expression even though it is will be calculated as such if we proceed. Therefore is drop_library is passed, drop this column from analysis.''' if drop_library: try: df.drop('ct_0',inplace=True) col_headers = utils.get_column_headers(df) if len(col_headers) < 2: raise SortSeqError( '''After dropping library there are no longer enough columns to run the analysis''') except: raise SortSeqError('''drop_library option was passed, but no ct_0 column exists''') #parameterize sequences into 3xL vectors raveledmat,batch,sw = utils.genweightandmat( df,par_seq_dict,dicttype,means=means,modeltype=modeltype) #Use ridge regression to find matrix. emat = Compute_Least_Squares(raveledmat,batch,sw,alpha=alpha) if lm == 'IM': seq_mat,wtrow = numerics.dataset2mutarray(df.copy(),modeltype) #this is also an MCMC routine, do the same as above. if initialize == 'rand': if modeltype == 'MAT': emat_0 = utils.RandEmat(len(df[seq_col_name][0]),len(seq_dict)) elif modeltype == 'NBR': emat_0 = utils.RandEmat(len(df['seq'][0])-1,len(seq_dict)) elif initialize == 'LS': emat_cols = ['val_' + inv_dict[i] for i in range(len(seq_dict))] emat_0_df = main(df.copy(),lm='LS',modeltype=modeltype,alpha=alpha,start=0,end=None,verbose=verbose) emat_0 = np.transpose(np.array(emat_0_df[emat_cols])) #pymc doesn't take sparse mat emat = MaximizeMI_memsaver( seq_mat,df.copy(),emat_0,wtrow,db=db,iteration=iteration,burnin=burnin, thin=thin,runnum=runnum,verbose=verbose) #now format the energy matrices to get them ready to output if (lm == 'IM' or lm == 'memsaver'): if modeltype == 'NBR': emat_typical = gauge.fix_neighbor(np.transpose(emat)) elif modeltype == 'MAT': emat_typical = gauge.fix_matrix(np.transpose(emat)) elif lm == 'ER': '''the emat for this format is currently transposed compared to other formats it is also already a data frame with columns [pos,val_...]''' emat_cols = ['val_' + inv_dict[i] for i in range(len(seq_dict))] emat_typical = emat[emat_cols] emat_typical = (gauge.fix_matrix((np.array(emat_typical)))) else: #must be Least squares emat_typical = utils.emat_typical_parameterization(emat,len(seq_dict)) if modeltype == 'NBR': emat_typical = gauge.fix_neighbor(np.transpose(emat_typical)) elif modeltype == 'MAT': emat_typical = gauge.fix_matrix(np.transpose(emat_typical)) em = pd.DataFrame(emat_typical) em.columns = val_cols #add position column if modeltype == 'NBR': pos = pd.Series(range(start,start - 1 + len(df[seq_col_name][0])),name='pos') else: pos = pd.Series(range(start,start + len(df[seq_col_name][0])),name='pos') output_df = pd.concat([pos,em],axis=1) # Validate model and return output_df = qc.validate_model(output_df,fix=True) return output_df
M = pymc.MCMC([pymcdf,emat],db='sqlite',dbname=dbname) else: M = pymc.MCMC([pymcdf,emat]) M.use_step_method(GaugePreservingStepper,emat) if not verbose: M.sample = shutthefuckup(M.sample) #M.sample(iteration,thin=thin,tune_interval=20000) M.sample(iteration,thin=thin) emat_mean = np.mean(M.trace('emat')[burnin:],axis=0) return emat_mean df = pd.io.parsers.read_csv(sys.argv[1],delim_whitespace=True) temp_seq_mat,wtrow = numerics.dataset2mutarray(df.copy(),'MAT') temp_seq_mat2 = temp_seq_mat.toarray() #we need a parameter for the effect of mutation at each base pair. #we remove 20 base pairs to remove the barcode sequence on the end of the sequence. len_seq = len(df.loc[0,'seq']) len_outputseq = len_seq - 20 len_barcode = 20 #We add 4 parameters for the barcode, because total_params = len_outputseq + len_barcode*4 seq_mat = np.zeros((temp_seq_mat2.shape[0],total_params)) for i in range(len_outputseq): seq_mat[:,i] = np.sum(temp_seq_mat2[:,i*4:(i*4+4)],axis=1) seq_mat[:,len_outputseq:] = temp_seq_mat2[:,-len_barcode*4:] seq_mat = scipy.sparse.csr_matrix(seq_mat) emat_0 = np.zeros((4,len_seq))
def main(data_df, model_df, start=0, end=None, err=False, coarse_graining_level=0, rsquared=False, return_freg=False): #determine whether you are working with RNA, DNA, or protein. #this also should determine modeltype (MAT, NBR, PAIR). dicttype, modeltype = qc.get_model_type(model_df) #get column header for the sequence column. seq_cols = qc.get_cols_from_df(data_df, 'seqs') if not len(seq_cols) == 1: raise SortSeqError('Dataframe has multiple seq cols: %s' % str(seq_cols)) #create dictionary that goes from, for example, nucleotide to number and #visa versa. seq_dict, inv_dict = utils.choose_dict(dicttype, modeltype=modeltype) #set name of sequences column based on type of sequence type_name_dict = {'dna': 'seq', 'rna': 'seq_rna', 'protein': 'seq_pro'} seq_col_name = type_name_dict[dicttype] if not end: seqL = len(data_df[seq_col_name][0]) - start else: seqL = end - start #throw out wrong length sequences. #Cut the sequences based on start and end, and then check if it makes sense if (start != 0 or end): data_df.loc[:,seq_col_name] = \ data_df.loc[:,seq_col_name].str.slice(start,end) right_length = data_df.loc[:, seq_col_name].apply(len) == (seqL) if not right_length.all(): sys.stderr.write('''Not all sequences are the same length! Throwing out incorrect sequences!''') data_df = data_df.loc[right_length, :] data_df = data_df.reset_index(drop=True) if modeltype == 'MAT': if seqL != len(model_df.loc[:, 'pos']): raise SortSeqError( 'model length does not match dataset length') elif modeltype == 'NBR': if seqL != len(model_df.loc[:, 'pos']) + 1: raise SortSeqError( 'model length does not match dataset length') elif modeltype == 'PAIR': if int(scipy.misc.comb(seqL, 2)) != len(model_df.loc[:, 'pos']): raise SortSeqError( 'model length does not match dataset length') #get column names of the counts columns (excluding total counts 'ct') col_headers = utils.get_column_headers(data_df) if 'ct' not in data_df.columns: data_df['ct'] = data_df[col_headers].sum(axis=1) #remove empty rows. data_df = data_df[data_df.ct != 0] #determine sequence length. #make a numpy array out of the model data frame model_df_headers = [ 'val_' + str(inv_dict[i]) for i in range(len(seq_dict)) ] value = np.array(model_df[model_df_headers]) #now we evaluate the expression of each sequence according to the model. #first convert to matrix representation of sequences seq_mat, wtrow = numerics.dataset2mutarray(data_df.copy(), modeltype) temp_df = data_df.copy() #evaluate energy of each sequence temp_df['val'] = numerics.eval_modelmatrix_on_mutarray( value, seq_mat, wtrow) #sort based on value temp_sorted = temp_df.sort_values(by='val') temp_sorted.reset_index(inplace=True, drop=True) #freg is a regularized plot which show how sequences are distributed #in energy space. if return_freg: fig, ax = plt.subplots() MI, freg = EstimateMutualInfoforMImax.alt4( temp_sorted, coarse_graining_level=coarse_graining_level, return_freg=return_freg) plt.imshow(freg, interpolation='nearest', aspect='auto') plt.savefig(return_freg) else: MI = EstimateMutualInfoforMImax.alt4( temp_sorted, coarse_graining_level=coarse_graining_level, return_freg=return_freg) #if we want to calculate error then use bootstrapping. if not err: Std = np.NaN else: data_df_for_sub = data_df.copy() sub_MI = np.zeros(15) for i in range(15): sub_df = data_df_for_sub.sample(int( len(data_df_for_sub.index) / 2)) sub_df.reset_index(inplace=True, drop=True) sub_MI[i], sub_std = main(sub_df, model_df, err=False) Std = np.std(sub_MI) / np.sqrt(2) #we can return linfoot corrolation (rsquared) or return MI. if rsquared: return (1 - 2**(-2 * MI)), (1 - 2**(-2 * Std)) else: return MI, Std
# Create sequences to test this on wtseq = 'AAAAAAAGTGAGATGGCAATCTAATTCGGCACCCCAGGTTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGG' L = len(wtseq) modeltypes = ['MAT','NBR'] seqtypes = ['dna','protein'] numseqs_dict = {'dna':10000,'protein':1000} for seqtype in seqtypes: for modeltype in modeltypes: for mutrate in [0.01,0.1,1]: numseqs = numseqs_dict[seqtype] dataset_df = simulate_library(wtseq,numseq=numseqs,mutrate=mutrate,tags=True,\ dicttype=seqtype) seqarray = numerics.dataset2seqarray(dataset_df,\ modeltype=modeltype) mutarray, wtrow = numerics.dataset2mutarray(dataset_df,\ modeltype=modeltype) # Print compression results seqarray_size = numerics.nbytes(seqarray) mutarray_size = numerics.nbytes(mutarray) # Create matrix for random model alphabet = qc.seqtype_to_alphabet_dict[seqtype] C = len(alphabet) num_rows = (L-1) if modeltype=='NBR' else L num_cols = C**2 if modeltype=='NBR' else C modelmatrix = randn(num_rows,num_cols) # Create model dataframe val_cols = qc.model_parameters_dict[(modeltype,seqtype)] model_df = pd.DataFrame(modelmatrix,columns=val_cols)
# Create sequences to test this on wtseq = 'AAAAAAAGTGAGATGGCAATCTAATTCGGCACCCCAGGTTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGG' L = len(wtseq) modeltypes = ['MAT', 'NBR'] seqtypes = ['dna', 'protein'] numseqs_dict = {'dna': 10000, 'protein': 1000} for seqtype in seqtypes: for modeltype in modeltypes: for mutrate in [0.01, 0.1, 1]: numseqs = numseqs_dict[seqtype] dataset_df = simulate_library(wtseq,numseq=numseqs,mutrate=mutrate,tags=True,\ dicttype=seqtype) seqarray = numerics.dataset2seqarray(dataset_df,\ modeltype=modeltype) mutarray, wtrow = numerics.dataset2mutarray(dataset_df,\ modeltype=modeltype) # Print compression results seqarray_size = numerics.nbytes(seqarray) mutarray_size = numerics.nbytes(mutarray) # Create matrix for random model alphabet = qc.seqtype_to_alphabet_dict[seqtype] C = len(alphabet) num_rows = (L - 1) if modeltype == 'NBR' else L num_cols = C**2 if modeltype == 'NBR' else C modelmatrix = randn(num_rows, num_cols) # Create model dataframe val_cols = qc.model_parameters_dict[(modeltype, seqtype)] model_df = pd.DataFrame(modelmatrix, columns=val_cols)