Example #1
0
def mpi_avg_grads(module):
    if num_procs() == 1:
        return
    for p in module.parameters():
        p_grad_np = p.grad.numpy()
        avg_p_grad = mpi_avg(p_grad_np)
        p_grad_np[:] = avg_p_grad[:]
Example #2
0
def sync_params(module):
    if num_procs() == 1:
        return

    for p in module.parameters():
        p_np = p.data.numpy()
        broadcast(p_np)
def sync_params(module):
    """ Sync all parameters of module across all MPI processes. """
    if num_procs() == 1:
        return
    for p in module.parameters():
        p_numpy = p.data.numpy()
        broadcast(p_numpy)
Example #4
0
def setup_pytorch_for_mpi():
    """
    Avoid slowdowns caused by each separate process's Pytorch using more than its fair share of CPU resources.
    """
    if torch.get_num_threads() == 1:
        return
    fair_num_threads = max(torch.get_num_threads() // num_procs(), 1)
    torch.set_num_threads(fair_num_threads)
def mpi_avg_grads(module):
    """ Average contents of gradient buffers across MPI processes. """
    if num_procs() == 1:
        return
    for p in module.parameters():
        p_grad_numpy = p.grad.numpy()  # numpy view of tensor data
        avg_p_grad = mpi_avg(p.grad)
        p_grad_numpy[:] = avg_p_grad[:]
def setup_pytorch_for_mpi():
    """
    Avoid slowdowns caused by each separate process's PyTorch using
    more than its fair share of CPU resources.
    """
    #print('Proc %d: Reporting original number of Torch threads as %d.'%(proc_id(), torch.get_num_threads()), flush=True)
    if torch.get_num_threads() == 1:
        return
    fair_num_threads = max(int(torch.get_num_threads() / num_procs()), 1)
    torch.set_num_threads(fair_num_threads)
Example #7
0
def ppo(env_fn,
        actor_critic=core.MLPActorCritic,
        ac_kwargs=dict(),
        seed=0,
        steps_per_epoch=4000,
        epochs=50,
        gamma=0.99,
        clip_ratio=0.2,
        pi_lr=3e-4,
        vf_lr=1e-3,
        train_pi_iters=80,
        train_v_iters=80,
        lam=0.97,
        max_ep_len=None,
        target_kl=0.01,
        logger_kwargs=dict(),
        save_freq=10,
        TensorBoard=True,
        save_nn=True,
        save_every=1000,
        load_latest=False,
        load_custom=False,
        LoadPath=None,
        RTA_type=None):
    """
	Proximal Policy Optimization (by clipping),

	with early stopping based on approximate KL

	Args:
		env_fn : A function which creates a copy of the environment.
			The environment must satisfy the OpenAI Gym API.

		actor_critic: The constructor method for a PyTorch Module with a
			``step`` method, an ``act`` method, a ``pi`` module, and a ``v``
			module. The ``step`` method should accept a batch of observations
			and return:

			===========  ================  ======================================
			Symbol       Shape             Description
			===========  ================  ======================================
			``a``        (batch, act_dim)  | Numpy array of actions for each
										   | observation.
			``v``        (batch,)          | Numpy array of value estimates
										   | for the provided observations.
			``logp_a``   (batch,)          | Numpy array of log probs for the
										   | actions in ``a``.
			===========  ================  ======================================

			The ``act`` method behaves the same as ``step`` but only returns ``a``.

			The ``pi`` module's forward call should accept a batch of
			observations and optionally a batch of actions, and return:

			===========  ================  ======================================
			Symbol       Shape             Description
			===========  ================  ======================================
			``pi``       N/A               | Torch Distribution object, containing
										   | a batch of distributions describing
										   | the policy for the provided observations.
			``logp_a``   (batch,)          | Optional (only returned if batch of
										   | actions is given). Tensor containing
										   | the log probability, according to
										   | the policy, of the provided actions.
										   | If actions not given, will contain
										   | ``None``.
			===========  ================  ======================================

			The ``v`` module's forward call should accept a batch of observations
			and return:

			===========  ================  ======================================
			Symbol       Shape             Description
			===========  ================  ======================================
			``v``        (batch,)          | Tensor containing the value estimates
										   | for the provided observations. (Critical:
										   | make sure to flatten this!)
			===========  ================  ======================================


		ac_kwargs (dict): Any kwargs appropriate for the ActorCritic object
			you provided to PPO.

		seed (int): Seed for random number generators.

		steps_per_epoch (int): Number of steps of interaction (state-action pairs)
			for the agent and the environment in each epoch.

		epochs (int): Number of epochs of interaction (equivalent to
			number of policy updates) to perform.

		gamma (float): Discount factor. (Always between 0 and 1.)

		clip_ratio (float): Hyperparameter for clipping in the policy objective.
			Roughly: how far can the new policy go from the old policy while
			still profiting (improving the objective function)? The new policy
			can still go farther than the clip_ratio says, but it doesn't help
			on the objective anymore. (Usually small, 0.1 to 0.3.) Typically
			denoted by :math:`\epsilon`.

		pi_lr (float): Learning rate for policy optimizer.

		vf_lr (float): Learning rate for value function optimizer.

		train_pi_iters (int): Maximum number of gradient descent steps to take
			on policy loss per epoch. (Early stopping may cause optimizer
			to take fewer than this.)

		train_v_iters (int): Number of gradient descent steps to take on
			value function per epoch.

		lam (float): Lambda for GAE-Lambda. (Always between 0 and 1,
			close to 1.)

		max_ep_len (int): Maximum length of trajectory / episode / rollout.

		target_kl (float): Roughly what KL divergence we think is appropriate
			between new and old policies after an update. This will get used
			for early stopping. (Usually small, 0.01 or 0.05.)

		logger_kwargs (dict): Keyword args for EpochLogger.

		save_freq (int): How often (in terms of gap between epochs) to save
			the current policy and value function.

		TensorBoard (bool): True plots to TensorBoard, False does not

		save_nn (bool): True saves neural network data, False does not

		save_every (int): How often to save neural network

		load_latest (bool): Load last saved neural network data before training

		load_custom (bool): Load custom neural network data file before training

		LoadPath (str): Path for custom neural network data file

		RTA_type (str): RTA framework, either 'CBF', 'SVL', 'ASIF', or
			'SBSF'

	"""

    # Special function to avoid certain slowdowns from PyTorch + MPI combo.
    setup_pytorch_for_mpi()

    # Set up logger and save configuration
    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    # Instantiate environment
    env = env_fn()
    obs_dim = env.observation_space.shape
    act_dim = env.action_space.shape

    # Random seed for each cpu
    seed += 1 * proc_id()
    env.seed(seed)

    # Create actor-critic module
    ac = actor_critic(env.observation_space, env.action_space, **ac_kwargs)

    # Load model if True
    if load_latest:
        models = glob.glob(f"{PATH}/models/PPO/*")
        LoadPath = max(models, key=os.path.getctime)
        ac.load_state_dict(torch.load(LoadPath))
    elif load_custom:
        ac.load_state_dict(torch.load(LoadPath))

    # Sync params across processes
    sync_params(ac)

    # Count variables
    var_counts = tuple(core.count_vars(module) for module in [ac.pi, ac.v])
    logger.log('\nNumber of parameters: \t pi: %d, \t v: %d\n' % var_counts)

    # Set up experience buffer
    local_steps_per_epoch = int(steps_per_epoch / num_procs())
    buf = PPOBuffer(obs_dim, act_dim, local_steps_per_epoch, gamma, lam)

    # Set up function for computing PPO policy loss
    def compute_loss_pi(data):
        obs, act, adv, logp_old = data['obs'], data['act'], data['adv'], data[
            'logp']

        # Policy loss
        pi, logp = ac.pi(obs, act)
        ratio = torch.exp(logp - logp_old)
        clip_adv = torch.clamp(ratio, 1 - clip_ratio, 1 + clip_ratio) * adv
        loss_pi = -(torch.min(ratio * adv, clip_adv)).mean()

        # Useful extra info
        approx_kl = (logp_old - logp).mean().item()
        ent = pi.entropy().mean().item()
        clipped = ratio.gt(1 + clip_ratio) | ratio.lt(1 - clip_ratio)
        clipfrac = torch.as_tensor(clipped, dtype=torch.float32).mean().item()
        pi_info = dict(kl=approx_kl, ent=ent, cf=clipfrac)

        return loss_pi, pi_info

    # Set up function for computing value loss
    def compute_loss_v(data):
        obs, ret = data['obs'], data['ret']
        return ((ac.v(obs) - ret)**2).mean()

    # Set up optimizers for policy and value function
    pi_optimizer = Adam(ac.pi.parameters(), lr=pi_lr)
    vf_optimizer = Adam(ac.v.parameters(), lr=vf_lr)

    # Set up model saving
    logger.setup_pytorch_saver(ac)

    def update():
        data = buf.get()

        pi_l_old, pi_info_old = compute_loss_pi(data)
        pi_l_old = pi_l_old.item()
        v_l_old = compute_loss_v(data).item()

        # Train policy with multiple steps of gradient descent
        for i in range(train_pi_iters):
            pi_optimizer.zero_grad()
            loss_pi, pi_info = compute_loss_pi(data)
            kl = mpi_avg(pi_info['kl'])
            if kl > 1.5 * target_kl:
                logger.log(
                    'Early stopping at step %d due to reaching max kl.' % i)
                break
            loss_pi.backward()
            mpi_avg_grads(ac.pi)  # average grads across MPI processes
            pi_optimizer.step()

        logger.store(StopIter=i)

        # Value function learning
        for i in range(train_v_iters):
            vf_optimizer.zero_grad()
            loss_v = compute_loss_v(data)
            loss_v.backward()
            mpi_avg_grads(ac.v)  # average grads across MPI processes
            vf_optimizer.step()

        # Log changes from update
        kl, ent, cf = pi_info['kl'], pi_info_old['ent'], pi_info['cf']
        logger.store(LossPi=pi_l_old,
                     LossV=v_l_old,
                     KL=kl,
                     Entropy=ent,
                     ClipFrac=cf,
                     DeltaLossPi=(loss_pi.item() - pi_l_old),
                     DeltaLossV=(loss_v.item() - v_l_old))

    # Import RTA
    if RTA_type == 'CBF':
        from CBF_for_speed_limit import RTA
    elif RTA_type == 'SVL':
        from Simple_velocity_limit import RTA
    elif RTA_type == 'ASIF':
        from IASIF import RTA
    elif RTA_type == 'SBSF':
        from ISimplex import RTA

    # Call RTA, define action conversion
    if RTA_type != 'off':
        env.RTA_reward = RTA_type

        rta = RTA(env)

        def RTA_act(obs, act):
            act = np.clip(act, -env.force_magnitude, env.force_magnitude)
            x0 = [obs[0], obs[1], 0, obs[2], obs[3], 0]
            u_des = np.array([[act[0]], [act[1]], [0]])
            u = rta.main(x0, u_des)
            new_act = [u[0, 0], u[1, 0]]
            if np.sqrt((act[0] - new_act[0])**2 +
                       (act[1] - new_act[1])**2) < 0.0001:
                env.RTA_on = False
            else:
                env.RTA_on = True
            return new_act

    # Prepare for interaction with environment
    start_time = time.time()
    o, ep_ret, ep_len = env.reset(), 0, 0
    total_episodes = 0
    RTA_percent = 0

    # Create TensorBoard file if True
    if TensorBoard and proc_id() == 0:
        if env_name == 'spacecraft-docking-continuous-v0' or env_name == 'spacecraft-docking-v0':
            Name = f"{PATH}/runs/Spacecraft-docking-" + current_time
        elif env_name == 'dubins-aircraft-v0' or env_name == 'dubins-aircraft-continuous-v0':
            Name = f"{PATH}/runs/Dubins-aircraft-" + current_time
        writer = SummaryWriter(Name)

    # Main loop: collect experience in env and update/log each epoch
    for epoch in range(epochs):
        batch_ret = []  # Track episode returns
        batch_len = []  # Track episode lengths
        batch_RTA_percent = []  # Track precentage of time RTA is on
        env.success = 0  # Track episode success rate
        env.failure = 0  # Track episode failure rate
        env.crash = 0  # Track episode crash rate
        env.overtime = 0  # Track episode over max time/control rate
        episodes = 0  # Track episodes
        delta_v = []  # Track episode total delta v
        for t in range(local_steps_per_epoch):
            a, v, logp = ac.step(torch.as_tensor(o, dtype=torch.float32))
            if RTA_type != 'off':  # If RTA is on, get RTA action
                RTA_a = RTA_act(o, a)
                if env.RTA_on:
                    RTA_percent += 1
                next_o, r, d, _ = env.step(RTA_a)
            else:  # If RTA is off, pass through desired action
                next_o, r, d, _ = env.step(a)
                if env_name == 'spacecraft-docking-continuous-v0' or env_name == 'spacecraft-docking-v0':
                    over_max_vel, _, _ = env.check_velocity(a[0], a[1])
                    if over_max_vel:
                        RTA_percent += 1
            ep_ret += r
            ep_len += 1

            # save and log
            buf.store(o, a, r, v, logp)
            logger.store(VVals=v)

            # Update obs (critical!)
            o = next_o

            timeout = ep_len == max_ep_len
            terminal = d or timeout
            epoch_ended = t == local_steps_per_epoch - 1

            if terminal or epoch_ended:
                if epoch_ended and not (terminal):
                    print('Warning: trajectory cut off by epoch at %d steps.' %
                          ep_len,
                          flush=True)
                # if trajectory didn't reach terminal state, bootstrap value target
                if timeout or epoch_ended:
                    _, v, _ = ac.step(torch.as_tensor(o, dtype=torch.float32))
                else:
                    v = 0
                buf.finish_path(v)
                if terminal:
                    # only save EpRet / EpLen if trajectory finished
                    logger.store(EpRet=ep_ret, EpLen=ep_len)
                    batch_ret.append(ep_ret)
                    batch_len.append(ep_len)
                    episodes += 1
                    if env_name == 'spacecraft-docking-continuous-v0' or env_name == 'spacecraft-docking-v0':
                        delta_v.append(env.control_input / env.mass_deputy)
                batch_RTA_percent.append(RTA_percent / ep_len * 100)
                RTA_percent = 0
                o, ep_ret, ep_len = env.reset(), 0, 0

        total_episodes += episodes
        # Track success, failure, crash, overtime rates
        if episodes != 0:
            success_rate = env.success / episodes
            failure_rate = env.failure / episodes
            crash_rate = env.crash / episodes
            overtime_rate = env.overtime / episodes
        else:
            success_rate = 0
            failure_rate = 0
            crash_rate = 0
            overtime_rate = 0
            raise (
                "No completed episodes logging will break [increase steps per epoch]"
            )

        # Save model
        if (epoch % save_freq == 0) or (epoch == epochs - 1):
            logger.save_state({'env': env}, None)

        # Perform PPO update!
        update()

        # Log info about epoch
        logger.log_tabular('Epoch', epoch)
        logger.log_tabular('EpRet', with_min_and_max=True)
        logger.log_tabular('EpLen', average_only=True)
        logger.log_tabular('VVals', with_min_and_max=True)
        logger.log_tabular('TotalEnvInteracts', (epoch + 1) * steps_per_epoch)
        logger.log_tabular('LossPi', average_only=True)
        logger.log_tabular('LossV', average_only=True)
        logger.log_tabular('DeltaLossPi', average_only=True)
        logger.log_tabular('DeltaLossV', average_only=True)
        logger.log_tabular('Entropy', average_only=True)
        logger.log_tabular('KL', average_only=True)
        logger.log_tabular('ClipFrac', average_only=True)
        logger.log_tabular('StopIter', average_only=True)
        logger.log_tabular('Time', time.time() - start_time)
        logger.dump_tabular()

        # Average data over all cpus
        avg_batch_ret = mpi_avg(np.mean(batch_ret))
        avg_batch_len = mpi_avg(np.mean(batch_len))
        avg_success_rate = mpi_avg(success_rate)
        avg_failure_rate = mpi_avg(failure_rate)
        avg_crash_rate = mpi_avg(crash_rate)
        avg_overtime_rate = mpi_avg(overtime_rate)
        if env_name == 'spacecraft-docking-continuous-v0' or env_name == 'spacecraft-docking-v0':
            avg_delta_v = mpi_avg(np.mean(delta_v))
            avg_RTA_percent = mpi_avg(np.mean(batch_RTA_percent))

        if proc_id() == 0:  # Only on one cpu
            # Plot to TensorBoard if True, only on one cpu
            if TensorBoard:
                writer.add_scalar('Return', avg_batch_ret, epoch)
                writer.add_scalar('Episode-Length', avg_batch_len * env.tau,
                                  epoch)
                writer.add_scalar('Success-Rate', avg_success_rate * 100,
                                  epoch)
                writer.add_scalar('Failure-Rate', avg_failure_rate * 100,
                                  epoch)
                writer.add_scalar('Crash-Rate', avg_crash_rate * 100, epoch)
                writer.add_scalar('Overtime-Rate', avg_overtime_rate * 100,
                                  epoch)
                if env_name == 'spacecraft-docking-continuous-v0' or env_name == 'spacecraft-docking-v0':
                    writer.add_scalar('Delta-V', avg_delta_v, epoch)
                    writer.add_scalar('RTA-on-percent', avg_RTA_percent, epoch)

            # Save neural network if true, can change to desired location
            if save_nn and epoch % save_every == 0 and epoch != 0:
                if not os.path.isdir(f"{PATH}/models"):
                    os.mkdir(f"{PATH}/models")
                if not os.path.isdir(f"{PATH}/models/PPO"):
                    os.mkdir(f"{PATH}/models/PPO")
                if env_name == 'spacecraft-docking-continuous-v0' or env_name == 'spacecraft-docking-v0':
                    Name2 = f"{PATH}/models/PPO/Spacecraft-docking-" + current_time + f"-epoch{epoch}.dat"
                elif env_name == 'dubins-aircraft-v0' or env_name == 'dubins-aircraft-continuous-v0':
                    Name2 = f"{PATH}/models/PPO/Dubins-aircraft-" + current_time + f"-epoch{epoch}.dat"
                torch.save(ac.state_dict(), Name2)

    # Average episodes per hour, episode per epoch
    ep_hr = mpi_avg(total_episodes) * args.cpu / (time.time() -
                                                  start_time) * 3600
    ep_Ep = mpi_avg(total_episodes) * args.cpu / (epoch + 1)

    # Plot on one cpu
    if proc_id() == 0:
        # Save neural network
        if save_nn:
            if not os.path.isdir(f"{PATH}/models"):
                os.mkdir(f"{PATH}/models")
            if not os.path.isdir(f"{PATH}/models/PPO"):
                os.mkdir(f"{PATH}/models/PPO")
            if env_name == 'spacecraft-docking-continuous-v0' or env_name == 'spacecraft-docking-v0':
                Name2 = f"{PATH}/models/PPO/Spacecraft-docking-" + current_time + "-final.dat"
            elif env_name == 'dubins-aircraft-v0' or env_name == 'dubins-aircraft-continuous-v0':
                Name2 = f"{PATH}/models/PPO/Dubins-aircraft-" + current_time + "-final.dat"
            torch.save(ac.state_dict(), Name2)

        # Print statistics on episodes
        print(
            f"Episodes per hour: {ep_hr:.0f}, Episodes per epoch: {ep_Ep:.0f}, Epochs per hour: {(epoch+1)/(time.time()-start_time)*3600:.0f}"
        )
Example #8
0
def ppo(env_fn,
        actor_critic=core.mlp_actor_critic,
        ac_kwargs=dict(),
        seed=0,
        trials_per_epoch=2500,
        steps_per_trial=100,
        epochs=50,
        gamma=0.99,
        clip_ratio=0.2,
        pi_lr=3e-4,
        vf_lr=1e-3,
        train_pi_iters=1000,
        train_v_iters=80,
        lam=0.97,
        max_ep_len=1000,
        target_kl=0.01,
        logger_kwargs=dict(),
        save_freq=10):
    """

    Args:
        env_fn : A function which creates a copy of the environment.
            The environment must satisfy the OpenAI Gym API.

        actor_critic: A function which takes in placeholder symbols
            for state, ``x_ph``, and action, ``a_ph``, and returns the main
            outputs from the agent's Tensorflow computation graph:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``pi``       (batch, act_dim)  | Samples actions from policy given
                                           | states.
            ``logp``     (batch,)          | Gives log probability, according to
                                           | the policy, of taking actions ``a_ph``
                                           | in states ``x_ph``.
            ``logp_pi``  (batch,)          | Gives log probability, according to
                                           | the policy, of the action sampled by
                                           | ``pi``.
            ``v``        (batch,)          | Gives the value estimate for states
                                           | in ``x_ph``. (Critical: make sure
                                           | to flatten this!)
            ===========  ================  ======================================

        ac_kwargs (dict): Any kwargs appropriate for the actor_critic
            function you provided to PPO.

        seed (int): Seed for random number generators.

        steps_per_epoch (int): Number of steps of interaction (state-action pairs)
            for the agent and the environment in each epoch.

        epochs (int): Number of epochs of interaction (equivalent to
            number of policy updates) to perform.

        gamma (float): Discount factor. (Always between 0 and 1.)

        clip_ratio (float): Hyperparameter for clipping in the policy objective.
            Roughly: how far can the new policy go from the old policy while
            still profiting (improving the objective function)? The new policy
            can still go farther than the clip_ratio says, but it doesn't help
            on the objective anymore. (Usually small, 0.1 to 0.3.)

        pi_lr (float): Learning rate for policy optimizer.

        vf_lr (float): Learning rate for value function optimizer.

        train_pi_iters (int): Maximum number of gradient descent steps to take
            on policy loss per epoch. (Early stopping may cause optimizer
            to take fewer than this.)

        train_v_iters (int): Number of gradient descent steps to take on
            value function per epoch.

        lam (float): Lambda for GAE-Lambda. (Always between 0 and 1,
            close to 1.)

        max_ep_len (int): Maximum length of trajectory / episode / rollout.

        target_kl (float): Roughly what KL divergence we think is appropriate
            between new and old policies after an update. This will get used
            for early stopping. (Usually small, 0.01 or 0.05.)

        logger_kwargs (dict): Keyword args for EpochLogger.

        save_freq (int): How often (in terms of gap between epochs) to save
            the current policy and value function.

    """

    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    seed += 10000 * proc_id()
    tf.set_random_seed(seed)
    np.random.seed(seed)

    env = env_fn()
    obs_dim = env.observation_space.shape
    act_dim = env.action_space.shape

    # Share information about action space with policy architecture
    ac_kwargs['action_space'] = env.action_space

    # Inputs to computation graph
    # x_ph, a_ph = core.placeholders_from_spaces(env.observation_space, env.action_space)
    x_ph = tf.placeholder(dtype=tf.float32, shape=(None, None, 1), name='x_ph')
    a_ph = tf.placeholder(dtype=tf.int32, shape=(None, None), name='a_ph')
    # adv_ph, ret_ph, logp_old_ph, rew_ph = core.placeholders(None, None, None, 1)
    adv_ph = tf.placeholder(dtype=tf.float32,
                            shape=(None, None),
                            name='adv_ph')
    ret_ph = tf.placeholder(dtype=tf.float32,
                            shape=(None, None),
                            name='ret_ph')
    logp_old_ph = tf.placeholder(dtype=tf.float32,
                                 shape=(None, None),
                                 name='logp_old_ph')
    rew_ph = tf.placeholder(dtype=tf.float32,
                            shape=(None, None, 1),
                            name='rew_ph')
    pi_state_ph = tf.placeholder(dtype=tf.float32,
                                 shape=(None, NUM_GRU_UNITS),
                                 name='pi_state_ph')
    v_state_ph = tf.placeholder(dtype=tf.float32,
                                shape=(None, NUM_GRU_UNITS),
                                name='v_state_ph')

    # Initialize rnn states for pi and v

    # Main outputs from computation graph
    pi, logp, logp_pi, v, new_pi_state, new_v_state = actor_critic(
        x_ph,
        a_ph,
        rew_ph,
        pi_state_ph,
        v_state_ph,
        NUM_GRU_UNITS,
        action_space=env.action_space)

    # Need all placeholders in *this* order later (to zip with data from buffer)
    all_phs = [x_ph, a_ph, adv_ph, ret_ph, logp_old_ph, rew_ph]

    # Every step, get: action, value, and logprob and reward
    get_action_ops = [pi, v, logp_pi, new_pi_state, new_v_state]

    # Experience buffer
    steps_per_epoch = trials_per_epoch * steps_per_trial
    local_steps_per_epoch = int(steps_per_epoch / num_procs())
    buf = PPOBuffer(obs_dim, act_dim, local_steps_per_epoch, gamma, lam)

    # Count variables
    var_counts = tuple(core.count_vars(scope) for scope in ['pi', 'v'])
    logger.log('\nNumber of parameters: \t pi: %d, \t v: %d\n' % var_counts)

    # PPO objectives
    ratio = tf.exp(logp - logp_old_ph)  # pi(a|s) / pi_old(a|s)
    min_adv = tf.where(adv_ph > 0, (1 + clip_ratio) * adv_ph,
                       (1 - clip_ratio) * adv_ph)
    pi_loss = -tf.reduce_mean(tf.minimum(ratio * adv_ph, min_adv))
    v_loss = tf.reduce_mean((ret_ph - v)**2)

    # Info (useful to watch during learning)
    approx_kl = tf.reduce_mean(
        logp_old_ph -
        logp)  # a sample estimate for KL-divergence, easy to compute
    approx_ent = tf.reduce_mean(
        -logp)  # a sample estimate for entropy, also easy to compute
    clipped = tf.logical_or(ratio > (1 + clip_ratio), ratio < (1 - clip_ratio))
    clipfrac = tf.reduce_mean(tf.cast(clipped, tf.float32))

    # Optimizers
    train_pi = MpiAdamOptimizer(
        learning_rate=pi_lr).minimize(pi_loss - 0.01 * approx_ent)
    train_v = MpiAdamOptimizer(learning_rate=vf_lr).minimize(v_loss)

    sess = tf.Session()
    sess.run(tf.global_variables_initializer())

    # Sync params across processes
    sess.run(sync_all_params())

    # Setup model saving
    logger.setup_tf_saver(sess, inputs={'x': x_ph}, outputs={'pi': pi, 'v': v})

    # tf.reset_default_graph()
    # restore_tf_graph(sess, '..//data//ppo//ppo_s0//simple_save')

    def update():
        inputs = {k: v for k, v in zip(all_phs, buf.get())}
        inputs[pi_state_ph] = np.zeros((trials_per_epoch, NUM_GRU_UNITS))
        inputs[v_state_ph] = np.zeros((trials_per_epoch, NUM_GRU_UNITS))
        pi_l_old, v_l_old, ent = sess.run([pi_loss, v_loss, approx_ent],
                                          feed_dict=inputs)
        print(pi_l_old, v_l_old)
        # Training
        for i in range(train_pi_iters):
            # print(f'pi:{i}')
            _, kl = sess.run([train_pi, approx_kl], feed_dict=inputs)
            # print(sess.run(pi_loss, feed_dict=inputs))
            kl = mpi_avg(kl)
            if kl > 1.5 * target_kl:
                logger.log(
                    'Early stopping at step %d due to reaching max kl.' % i)
                break
        logger.store(StopIter=i)
        for _ in range(train_v_iters):
            # print(f'v:{_}')
            sess.run(train_v, feed_dict=inputs)

        # Log changes from update
        import datetime
        print(f'finish one batch training at {datetime.datetime.now()}')
        pi_l_new, v_l_new, kl, cf = sess.run(
            [pi_loss, v_loss, approx_kl, clipfrac], feed_dict=inputs)
        logger.store(LossPi=pi_l_old,
                     LossV=v_l_old,
                     KL=kl,
                     Entropy=ent,
                     ClipFrac=cf,
                     DeltaLossPi=(pi_l_new - pi_l_old),
                     DeltaLossV=(v_l_new - v_l_old))

    start_time = time.time()
    o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0

    # Main loop: collect experience in env and update/log each epoch

    for epoch in range(epochs):
        for trial in range(trials_per_epoch):
            print(f'trial: {trial}')
            old_a = np.array([0]).reshape(1, 1)
            old_r = np.array([0]).reshape((1, 1, 1))
            means = env.sample_tasks(1)[0]
            action_dict = defaultdict(int)
            for i in range(env.action_space.n):
                action_dict[i] = 0

            env.reset_task_simple(means)
            task_avg = 0.0
            pi_state_t = np.zeros((1, NUM_GRU_UNITS))
            v_state_t = np.zeros((1, NUM_GRU_UNITS))
            for step in range(steps_per_trial):
                a, v_t, logp_t, pi_state_t, v_state_t = sess.run(
                    get_action_ops,
                    feed_dict={
                        x_ph: o.reshape(1, 1, -1),
                        a_ph: old_a,
                        rew_ph: old_r,
                        pi_state_ph: pi_state_t,
                        v_state_ph: v_state_t
                    })
                # save and log
                buf.store(o, a, r, v_t, logp_t)
                logger.store(VVals=v_t)

                try:
                    o, r, d, _ = env.step(a[0][0])
                except:
                    print(a)
                    raise AssertionError

                action_dict[a[0][0]] += 1

                old_a = np.array(a).reshape(1, 1)
                old_r = np.array([r]).reshape(1, 1, 1)
                ep_ret += r
                task_avg += r
                ep_len += 1

                terminal = d or (ep_len == max_ep_len)
                if terminal or (step == local_steps_per_epoch - 1):
                    if not (terminal):
                        print(
                            'Warning: trajectory cut off by epoch at %d steps.'
                            % ep_len)
                    # if trajectory didn't reach terminal state, bootstrap value target
                    last_val = r if d else sess.run(
                        v, feed_dict={x_ph: o.reshape(1, -1)})
                    buf.finish_path(last_val)
                    if terminal:
                        # only save EpRet / EpLen if trajectory finished
                        logger.store(EpRet=ep_ret, EpLen=ep_len)

                    o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0

            # logger.log_tabular('Epoch', epoch)
            # logger.log_tabular('EpRet', with_min_and_max=True)
            # logger.log_tabular('Means', means)
            # logger.dump_tabular()
            print(f'avg in trial {trial}: {task_avg / steps_per_trial}')
            print(f'Means in trial {trial}: {means}')

            print(action_dict)

        # Save model
        if (epoch % save_freq == 0) or (epoch == epochs - 1):
            logger.save_state({'env': env}, None)
            # saved_path = saver.save(sess, f"/tmp/model_epoch{epoch}.ckpt")
            # print(f'Model saved in {saved_path}')
        # Perform PPO update!

        update()
        logger.log_tabular('Epoch', epoch)
        logger.log_tabular('EpRet', with_min_and_max=True)
        logger.log_tabular('EpLen', average_only=True)
        logger.log_tabular('VVals', with_min_and_max=True)
        logger.log_tabular('TotalEnvInteracts', (epoch + 1) * steps_per_epoch)
        logger.log_tabular('LossPi', average_only=True)
        logger.log_tabular('LossV', average_only=True)
        logger.log_tabular('DeltaLossPi', average_only=True)
        logger.log_tabular('DeltaLossV', average_only=True)
        logger.log_tabular('Entropy', average_only=True)
        logger.log_tabular('KL', average_only=True)
        logger.log_tabular('ClipFrac', average_only=True)
        logger.log_tabular('StopIter', average_only=True)
        logger.log_tabular('Time', time.time() - start_time)
        logger.dump_tabular()
Example #9
0
def ppo(env_fn,
        actor_critic=core.MLPActorCritic,
        ac_kwargs=dict(),
        seed=0,
        steps_per_epoch=4000,
        epochs=50,
        gamma=0.99,
        clip_ratio=0.2,
        pi_lr=3e-4,
        vf_lr=1e-3,
        train_pi_iters=80,
        train_v_iters=80,
        lam=0.97,
        max_ep_len=2000,
        target_kl=0.01,
        logger_kwargs=dict(),
        save_freq=10):

    global RENDER, BONUS
    """
    Proximal Policy Optimization (by clipping), 

    with early stopping based on approximate KL

    Args:
        env_fn : A function which creates a copy of the environment.
            The environment must satisfy the OpenAI Gym API.

        actor_critic: The constructor method for a PyTorch Module with a 
            ``step`` method, an ``act`` method, a ``pi`` module, and a ``v`` 
            module. The ``step`` method should accept a batch of observations 
            and return:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``a``        (batch, act_dim)  | Numpy array of actions for each 
                                           | observation.
            ``v``        (batch,)          | Numpy array of value estimates
                                           | for the provided observations.
            ``logp_a``   (batch,)          | Numpy array of log probs for the
                                           | actions in ``a``.
            ===========  ================  ======================================

            The ``act`` method behaves the same as ``step`` but only returns ``a``.

            The ``pi`` module's forward call should accept a batch of 
            observations and optionally a batch of actions, and return:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``pi``       N/A               | Torch Distribution object, containing
                                           | a batch of distributions describing
                                           | the policy for the provided observations.
            ``logp_a``   (batch,)          | Optional (only returned if batch of
                                           | actions is given). Tensor containing 
                                           | the log probability, according to 
                                           | the policy, of the provided actions.
                                           | If actions not given, will contain
                                           | ``None``.
            ===========  ================  ======================================

            The ``v`` module's forward call should accept a batch of observations
            and return:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``v``        (batch,)          | Tensor containing the value estimates
                                           | for the provided observations. (Critical: 
                                           | make sure to flatten this!)
            ===========  ================  ======================================


        ac_kwargs (dict): Any kwargs appropriate for the ActorCritic object 
            you provided to PPO.

        seed (int): Seed for random number generators.

        steps_per_epoch (int): Number of steps of interaction (state-action pairs) 
            for the agent and the environment in each epoch.

        epochs (int): Number of epochs of interaction (equivalent to
            number of policy updates) to perform.

        gamma (float): Discount factor. (Always between 0 and 1.)

        clip_ratio (float): Hyperparameter for clipping in the policy objective.
            Roughly: how far can the new policy go from the old policy while 
            still profiting (improving the objective function)? The new policy 
            can still go farther than the clip_ratio says, but it doesn't help
            on the objective anymore. (Usually small, 0.1 to 0.3.) Typically
            denoted by :math:`\epsilon`. 

        pi_lr (float): Learning rate for policy optimizer.

        vf_lr (float): Learning rate for value function optimizer.

        train_pi_iters (int): Maximum number of gradient descent steps to take 
            on policy loss per epoch. (Early stopping may cause optimizer
            to take fewer than this.)

        train_v_iters (int): Number of gradient descent steps to take on 
            value function per epoch.

        lam (float): Lambda for GAE-Lambda. (Always between 0 and 1,
            close to 1.)

        max_ep_len (int): Maximum length of trajectory / episode / rollout.

        target_kl (float): Roughly what KL divergence we think is appropriate
            between new and old policies after an update. This will get used 
            for early stopping. (Usually small, 0.01 or 0.05.)

        logger_kwargs (dict): Keyword args for EpochLogger.

        save_freq (int): How often (in terms of gap between epochs) to save
            the current policy and value function.

    """

    # Reachability Trainer
    r_network = R_Network().to(device)
    trainer = R_Network_Trainer(r_network=r_network, exp_name="random1")
    episodic_memory = EpisodicMemory(embedding_shape=[EMBEDDING_DIM])

    # Special function to avoid certain slowdowns from PyTorch + MPI combo.
    setup_pytorch_for_mpi()

    # Set up logger and save configuration
    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    # Random seed
    seed += 10000 * proc_id()
    torch.manual_seed(seed)
    np.random.seed(seed)

    # Instantiate environment
    env = env_fn()
    observation_space = gym.spaces.Box(low=0.0, high=1.0, shape=(3, 64, 64))
    action_space = gym.spaces.Discrete(3)
    obs_dim = observation_space.shape
    act_dim = action_space.shape

    # Create actor-critic module
    ac = actor_critic(observation_space, action_space, **ac_kwargs)

    # Sync params across processes
    sync_params(ac)

    # Count variables
    var_counts = tuple(core.count_vars(module) for module in [ac.pi, ac.v])
    logger.log('\nNumber of parameters: \t pi: %d, \t v: %d\n' % var_counts)

    # Set up experience buffer
    local_steps_per_epoch = int(steps_per_epoch / num_procs())
    buf = PPOBuffer(obs_dim, act_dim, local_steps_per_epoch, gamma, lam)

    # Set up function for computing PPO policy loss
    def compute_loss_pi(data):
        obs, act, adv, logp_old = data['obs'], data['act'], data['adv'], data[
            'logp']

        # Policy loss
        pi, logp = ac.pi(obs, act)
        ratio = torch.exp(logp - logp_old)
        clip_adv = torch.clamp(ratio, 1 - clip_ratio, 1 + clip_ratio) * adv
        loss_pi = -(torch.min(ratio * adv, clip_adv)).mean()

        # Useful extra info
        approx_kl = (logp_old - logp).mean().item()
        ent = pi.entropy().mean().item()
        clipped = ratio.gt(1 + clip_ratio) | ratio.lt(1 - clip_ratio)
        clipfrac = torch.as_tensor(clipped, dtype=torch.float32).mean().item()
        pi_info = dict(kl=approx_kl, ent=ent, cf=clipfrac)

        return loss_pi, pi_info

    # Set up function for computing value loss
    def compute_loss_v(data):
        obs, ret = data['obs'], data['ret']
        return ((ac.v(obs) - ret)**2).mean()

    # Set up optimizers for policy and value function
    pi_optimizer = Adam(ac.pi.parameters(), lr=pi_lr)
    vf_optimizer = Adam(ac.v.parameters(), lr=vf_lr)

    # Set up model saving
    logger.setup_pytorch_saver(ac)

    def update():
        data = buf.get()

        pi_l_old, pi_info_old = compute_loss_pi(data)
        pi_l_old = pi_l_old.item()
        v_l_old = compute_loss_v(data).item()

        # Train policy with multiple steps of gradient descent
        for i in range(train_pi_iters):
            pi_optimizer.zero_grad()
            loss_pi, pi_info = compute_loss_pi(data)
            # Entropy bonus
            loss_pi += pi_info['ent'] * 0.0021
            kl = mpi_avg(pi_info['kl'])
            if kl > 1.5 * target_kl:
                logger.log(
                    'Early stopping at step %d due to reaching max kl.' % i)
                break
            loss_pi.backward()
            mpi_avg_grads(ac.pi)  # average grads across MPI processes
            pi_optimizer.step()

        logger.store(StopIter=i)

        # Value function learning
        for i in range(train_v_iters):
            vf_optimizer.zero_grad()
            loss_v = compute_loss_v(data)
            loss_v.backward()
            mpi_avg_grads(ac.v)  # average grads across MPI processes
            vf_optimizer.step()

        # Log changes from update
        kl, ent, cf = pi_info['kl'], pi_info_old['ent'], pi_info['cf']
        logger.store(LossPi=pi_l_old,
                     LossV=v_l_old,
                     KL=kl,
                     Entropy=ent,
                     ClipFrac=cf,
                     DeltaLossPi=(loss_pi.item() - pi_l_old),
                     DeltaLossV=(loss_v.item() - v_l_old))

    # Prepare for interaction with environment
    start_time = time.time()
    o, _ = env.reset()
    env.render()
    o = o.astype(np.float32) / 255.
    o = o.transpose(2, 0, 1)
    ep_ret, ep_len = 0, 0
    indices = []

    # Main loop: collect experience in env and update/log each epoch
    for epoch in range(epochs):
        for t in range(local_steps_per_epoch):
            state = torch.as_tensor(o[np.newaxis, ...], dtype=torch.float32)
            a, v, logp = ac.step(state)

            next_o, r, d, info = env.step(a)
            next_o = next_o.astype(np.float32) / 255.

            d = ep_len == max_ep_len
            trainer.store_new_state([next_o], [r], [d], [None])

            r_network.eval()
            with torch.no_grad():
                state_embedding = r_network.embed_observation(
                    torch.FloatTensor([o]).to(device)).cpu().numpy()[0]
                aggregated, _, _ = similarity_to_memory(
                    state_embedding, episodic_memory, r_network)
                curiosity_bonus = 0.03 * (0.5 - aggregated)
                if BONUS:
                    print(f'{curiosity_bonus:.3f}')
                if curiosity_bonus > 0 or len(episodic_memory) == 0:
                    idx = episodic_memory.store_new_state(state_embedding)
                    x = int(env.map_scale * info['pose']['x'])
                    y = int(env.map_scale * info['pose']['y'])
                    if idx == len(indices):
                        indices.append((x, y))
                    else:
                        indices[idx] = (x, y)

            r_network.train()

            next_o = next_o.transpose(2, 0, 1)
            ep_ret += r + curiosity_bonus
            ep_len += 1

            # save and log
            buf.store(o, a, r, v, logp)
            logger.store(VVals=v)

            k = cv2.waitKey(1)
            if k == ord('s'):
                RENDER = 1 - RENDER
            elif k == ord('b'):
                BONUS = 1 - BONUS

            if RENDER:
                env.info['map'] = cv2.flip(env.info['map'], 0)
                for index in indices:
                    cv2.circle(env.info['map'], index, 3, (0, 0, 255), -1)
                env.info['map'] = cv2.flip(env.info['map'], 0)
                env.render()

            # Update obs (critical!)
            o = next_o

            timeout = ep_len == max_ep_len
            terminal = d or timeout
            epoch_ended = t == local_steps_per_epoch - 1

            if terminal or epoch_ended:
                if epoch_ended and not (terminal):
                    print('Warning: trajectory cut off by epoch at %d steps.' %
                          ep_len,
                          flush=True)
                # if trajectory didn't reach terminal state, bootstrap value target
                if timeout or epoch_ended:
                    state = torch.as_tensor(o[np.newaxis, ...],
                                            dtype=torch.float32)
                    _, v, _ = ac.step(state)
                else:
                    v = 0
                buf.finish_path(v)
                if terminal:
                    # only save EpRet / EpLen if trajectory finished
                    logger.store(EpRet=ep_ret, EpLen=ep_len)
                print(ep_ret, ep_len, len(episodic_memory))
                ep_ret, ep_len = 0, 0
                o, _ = env.reset()
                o = o.astype(np.float32) / 255.
                o = o.transpose(2, 0, 1)
                episodic_memory.reset()
                indices = []

        # Save model
        if (epoch % save_freq == 0) or (epoch == epochs - 1):
            logger.save_state({'env': env}, None)

        # Perform PPO update!
        if epoch > 4:
            update()
            # Log info about epoch
            logger.log_tabular('Epoch', epoch)
            logger.log_tabular('EpRet', with_min_and_max=True)
            logger.log_tabular('EpLen', average_only=True)
            logger.log_tabular('VVals', with_min_and_max=True)
            logger.log_tabular('TotalEnvInteracts',
                               (epoch + 1) * steps_per_epoch)
            logger.log_tabular('LossPi', average_only=True)
            logger.log_tabular('LossV', average_only=True)
            logger.log_tabular('DeltaLossPi', average_only=True)
            logger.log_tabular('DeltaLossV', average_only=True)
            logger.log_tabular('Entropy', average_only=True)
            logger.log_tabular('KL', average_only=True)
            logger.log_tabular('ClipFrac', average_only=True)
            logger.log_tabular('StopIter', average_only=True)
            logger.log_tabular('Time', time.time() - start_time)
            logger.dump_tabular()

        else:
            buf.get()
        env.eval(path=args.eval_path, play_speed=args.play_speed)
        sys.exit()

    mpi_tools.mpi_fork(args.num_procs)
    proc_id = mpi_tools.proc_id()

    mpi_tools.setup_pytorch_for_mpi()

    # Random seed
    seed = 0
    seed += 10000 * proc_id
    torch.manual_seed(seed)
    np.random.seed(seed)

    env = envs.env_by_name(args.env)
    sample_size = int(args.sample_size / mpi_tools.num_procs())
    print('sample_size ', sample_size, flush=True)

    buffer = PPOBuffer(obs_dim=env.obs_dim,
                       act_dim=env.act_dim,
                       buffer_size=sample_size)
    actor_std = 0.2 * np.ones(env.act_dim, dtype=np.float32)
    actor = nns.MLPGaussianActor(env.obs_dim, env.act_dim, args.hid,
                                 torch.nn.ReLU, actor_std)
    critic = nns.MLPCritic(env.obs_dim, args.hid, torch.nn.ReLU)
    mpi_tools.sync_params(actor)
    mpi_tools.sync_params(critic)
    agent = rlPPO(actor,
                  critic,
                  lr_a=args.lr_a,
                  lr_c=args.lr_c,