Example #1
0
def doit(filenames):
  dataman = myutils.DataManager(50, map(lambda x: x(), detailedo2Analysis.O2DataHandlers) + [ analyzeGeneral.DataTumorTissueSingle(), analyzeGeneral.DataDistanceFromCenter(), analyzeGeneral.DataBasicVessel(), analyzeGeneral.DataVesselSamples(), analyzeGeneral.DataVesselRadial(), analyzeGeneral.DataVesselGlobal(), analyzeBloodFlow.DataTumorBloodFlow()])
  ensemble = EnsembleFiles(dataman, filenames,'po2/adaption/' )
  out_prefix, out_suffix = myutils.splitcommonpresuffix(map(lambda s: basename(s), filenames))
  output_base_filename = splitext(out_prefix+out_suffix)[0]
  if ensemble.o2ConfigName:
    fn_measure = 'detailedo2_%s_common.h5' % ensemble.o2ConfigName
  else:
    fn_measure = 'detailedo2_common.h5'
    
  f_measure = h5files.open(fn_measure, 'a')
  def cachelocation(g):
    path = posixpath.join('FileCS_'+myutils.checksum(basename(g.file.filename)), g.name.strip(posixpath.sep))
    return (f_measure, path)
  measurementinfo = MeasurementInfo(sample_length = 30.,
                                    cachelocation_callback = cachelocation,
                                    distancemap_spec = 'radial')
                                    
  with mpl_utils.PageWriter(output_base_filename+'.pdf', fileformats = ['pdf']) as pdfwriter: 
    if 0:    
      compare_tissue_saturation(dataman, ensemble, pdfwriter)
    
    if 0:
      #try:
      #  histogramGroupFinal   = f_measure['combinedHistogramsFinal']
      #  histogramGroupInitial = f_measure['combinedHistogramsInitial']
      #except KeyError:
      
      #histogramGroupFinal   = f_measure.recreate_group('combinedHistogramsFinal')
      histogramGroupInitial = f_measure.recreate_group('combinedHistogramsInitial')        
      #ComputeHistogramsOfPo2Items(dataman, ensemble.items, measurementinfo, histogramGroupFinal)
      ComputeHistogramsOfPo2Items(dataman, ensemble.items, measurementinfo, histogramGroupInitial)
      #PlotHistograms(pdfwriter, histogramGroupFinal, 'tum', 'Tumor')
      PlotHistograms(pdfwriter, histogramGroupInitial, 'all', 'Initial')
Example #2
0
        analyzeGeneral.DataDistanceFromCenter(),
        analyzeGeneral.DataBasicVessel(),
        analyzeGeneral.DataVesselSamples(),
        DataPressureMvdCorrelation(200., 5, 30., cachelocation,
                                   cachelocationEnsemble)
    ])

    if not options.picz:
        print '-----------computing sammples------------'
        localSamples = dataman.obtain_data('intervascular_map_correlations',
                                           thegroups)
        globalSamples = dataman.obtain_data(
            'intervascular_global_correlations', thegroups)
        print '--------------plotting ---------------'

        with mpl_utils.PageWriter(outputbasename + '_mvd-grad.pdf',
                                  fileformats=['svg']) as pdfwriter:
            fig, axes = pyplot.subplots(1,
                                        2,
                                        figsize=mpl_utils.a4size * np.asarray(
                                            (0.8, 0.2)))
            ax = axes[0]

            dataPage = []

            samples = localSamples
            mask = np.asarray(samples['mask'])
            maski = ~mask
            maski[np.random.rand(len(mask)) < 0.95] = False
            r = np.random.rand(len(mask))
            dilution = float(options.num_samples) / len(mask)
            mask[r > dilution] = False
Example #3
0
    def AnalyzeScaleVariation(filenames):
        import matplotlib.pyplot as pyplot
        import mpl_utils
        import krebs.quantities as Q
        import collections

        data = []
        for fn in filenames:
            with h5py.File(fn, 'r+') as f:
                sample = ObtainDataOfVesselFile(f)
                del sample['message']
                data.append(sample)

        byScale = collections.defaultdict(list)
        for d in data:
            scale = d['scale']
            byScale[scale].append(d)
        for k, v in byScale.items():
            byScale[k] = myutils.zipListOfDicts(v)

        curves = collections.defaultdict(list)
        for k, v in byScale.items():
            res = ComputeSingleNumberAvgStd(v)
            for name, (std, avg) in res.items():
                curves[name].append((std, avg))
        order = np.argsort(np.asarray(curves['scale'])[:, 0])
        for k, v in curves.items():
            curves[k] = np.asarray(v).transpose()[:, order]

        scales = {
            'mvd': (Q.um**-2).asNumber(Q.mm**-2),
            'rbv': 100.,
            'rbf': 60.,
        }

        with mpl_utils.PageWriter('vessel-calibration-analysis',
                                  fileformats=['pdf']) as pdfwriter:
            fig, axes = pyplot.subplots(3,
                                        1,
                                        figsize=mpl_utils.a4size *
                                        np.asarray([0.4, 0.5]))
            for scale, data in byScale.items():
                bins = np.average(
                    data['bins'], axis=0
                )  # sanity check, all bins arrays have equal size, so just try to average the bin boundaries, even if it makes no real sense
                x = bins
                x_rbv = 0.5 * (x[1:] + x[:-1])  # bin center for rBV
                # plot things
                ax = axes[0]
                ya = data['mvd']
                ax.errorbar(x,
                            scales['mvd'] * np.average(ya, axis=0),
                            yerr=scales['mvd'] * np.std(ya, axis=0),
                            label=('h = %0.f' % scale))
                legend = ax.legend(loc=4, fontsize='xx-small')
                ax = axes[1]
                scale = scales['rbv']
                ya = data['rbv']
                ax.errorbar(x_rbv,
                            scale * np.average(ya, axis=0),
                            yerr=scale * np.std(ya, axis=0))
                ax = axes[2]
                ya = data['rbf']
                scale = scales['rbf']
                ax.errorbar(x,
                            scale * np.average(ya, axis=0),
                            yerr=scale * np.std(ya, axis=0))
                axes[0].set(ylabel='mvd [$mm^{-1}$]')
                axes[1].set(ylabel='rbv [$\%$]')
                axes[2].set(ylabel='rbf [$min^{-1}$]', xlabel='$|x| [\mu m]$')
            pyplot.tight_layout()
            pyplot.legend()
            pdfwriter.savefig(fig)

            fig, axes = pyplot.subplots(3,
                                        1,
                                        figsize=mpl_utils.a4size *
                                        np.asarray([0.4, 0.5]))

            for ax in axes:
                ax.grid(linestyle=':', linewidth=0.5, color='#aaaaaa')

            x = curves['scale'][0, :]
            ax = axes[0]
            y, yerr = scales['mvd'] * curves['mvd']
            ax.errorbar(x, y, yerr=yerr)
            ax = axes[1]
            y, yerr = scales['rbv'] * curves['rbv']
            ax.errorbar(x, y, yerr=yerr)
            ax = axes[2]
            y, yerr = scales['rbf'] * curves['rbf']
            ax.errorbar(x, y, yerr=yerr)

            axes[0].set(ylabel='mvd [$mm^{-1}$]')
            axes[1].set(ylabel='rbv [$\%$]')
            axes[2].set(ylabel='rbf [$min^{-1}$]', xlabel='$h [\mu m]$')

            pyplot.tight_layout()
            pdfwriter.savefig(fig)
Example #4
0
if __name__ == "__main__":
    filenames = sys.argv[1:-1]
    pattern = sys.argv[-1]
    if 0:
        plotSingleRun(sys.argv[1])
    else:
        dataman = myutils.DataManager(100, [
            DataTumorTissueSingle(),
            DataVesselRadial(),
            DataVesselSamples(),
            DataBasicVessel(),
            DataDistanceFromCenter()
        ])
        files = [
            ResultFile(h5files.open(fn, 'r+'), dataman, pattern)
            for fn in filenames
        ]
        for f in files:
            fix_time(f.f)
        common_filename = myutils.sanitize_posixpath(
            splitext(commonprefix(filenames))[0])
        with mpl_utils.PageWriter(common_filename + '.pdf',
                                  formats=['pdf']) as pdfwriter:
            PlotRadial(pdfwriter, dataman, files, 'radial')

            #vesselgroups = [ f.f[f.groupnames[-1]]['vessels'] for f in files ]
            #fig, ax = pyplot.subplots(1,1, figsize = (mpl_utils.a4size[0]*0.8, mpl_utils.a4size[0]*0.4))
            #PlotRadiusHistogram(ax, dataman, vesselgroups, krebsutils.WITHIN_TUMOR)
            #pdfwriter.savefig(fig, postfix='_radiushisto')
    if 0:
        printVolumina(sys.argv[2:], sys.argv[1])