def plot_2d_density(): modes = 128 L = 80. gamma = 0.1 N = L ** 2 / gamma samples = 4 results = get('2d', initial='opposite', gamma=gamma, L_trap=L, t=20., nu=0.1, steps=5000, modes=modes, ensembles=1, samples=samples) n = numpy.array(results['density']).transpose(1, 0, 2, 3) print("* 2d_density") print(results['errors']['density']) times = numpy.linspace(0, results['t'], results['samples'] + 1) levels = numpy.linspace(-0.5, 0.5, 11) fig = mpl.figure(width=2, aspect=0.35) grid2 = ImageGrid(fig, [0.1, 0.0, 0.8, 1.0], nrows_ncols = (1, 3), direction="row", axes_pad = 0.2, add_all=True, label_mode = "1", share_all = True, cbar_location="right", cbar_mode="single", cbar_size="5%", cbar_pad=0.2, ) grid2[0].set_xlabel('$\\mathit{y}$') grid2[0].set_ylabel('$\\mathit{x}$') for j, nt in enumerate([1, 2, 4]): #s = fig.add_subplot([311, 321, 331][j], xlabel='$\\mathit{y}$', ylabel='$\\mathit{x}$') s = grid2[j] data = (n[0][nt] - n[1][nt]).T / (4 * N / (L**2)) data = numpy.clip(data, -0.5, 0.5) #data = scipy.ndimage.zoom(data, 0.25) data = scipy.ndimage.gaussian_filter(data, sigma=0.5, order=0) im = s.imshow(data, extent=(-L/2, L/2, -L/2, L/2), vmin=-0.5, vmax=0.5, cmap=cmap, interpolation='none', aspect=1) fig.text(0.18 + 0.26 * j, 0.9, '$\\tau=' + str(int(times[nt])) + '$') #fig.colorbar(im,orientation='vertical', shrink=0.6, ticks=levels).set_label('$\\mathit{j}$') #fig.tight_layout() grid2[-1].cax.colorbar(im, ticks=levels).set_label_text('$\\mathit{j}$') grid2[-1].cax.toggle_label(True) fig.savefig('2d_density' + suffix)
def plot_1d_no_coupling_varying_L(): gamma = 0.1 L_base = 10. modes_base = 32 t = 25. fig = mpl.figure() colors = [mpl.color.f[c].main for c in ('blue', 'red', 'green', 'yellow')] linestyles = ['-', '--', '-.', ':'] print("* 1d_no_coupling_varying_L") s = fig.add_subplot(111, xlabel='$\\mathit{\\tau}$', ylabel='$\\mathit{J}$') s.plot([0, t], [0, 0], color='grey', linestyle='--', linewidth=0.5) for i, j in enumerate([0, 1, 2, 3]): L = L_base * 2**j modes = modes_base * 2**j results = get('1d', initial='opposite', gamma=gamma, L_trap=L, t=t, nu=0, steps=10000, modes=modes, ensembles=1000) N = L / gamma times = numpy.linspace(0, results['t'], results['samples'] + 1) n0m = numpy.array(results['Nminus_mean']) / N n0e = numpy.array(results['Nminus_std']) / numpy.sqrt( results['ensembles']) / N n1m = numpy.array(results['Nplus_mean']) / N n1e = numpy.array(results['Nplus_std']) / numpy.sqrt( results['ensembles']) / N print(L, results['errors']['Nminus_mean']) ax = s.plot(times, (n1m - n0m) / 4, label="$L={L},\\,M={M}$".format(L=L, M=modes), color=colors[i], linestyle=linestyles[i], dashes=mpl.dash[linestyles[i]]) #s.plot(times, n0m + n0e, color=ax[0].get_color(), linestyle='--') #s.plot(times, n0m - n0e, color=ax[0].get_color(), linestyle='--') s.set_ylim(-0.5, 0.5) s.set_yticks([-0.5, -0.25, 0, 0.25, 0.5]) #s.legend() fig.tight_layout() fig.savefig('1d_no_coupling_varying_L' + suffix)
def plot_1d_varying_g12(): gamma = 0.1 L = 80. modes = 256 t = 25. colors = [mpl.color.f[c].main for c in ('blue', 'red', 'green', 'yellow')] linestyles = ['-', '--', '-.', ':'] print("* 1d_varying_g12") fig = mpl.figure() s = fig.add_subplot(111, xlabel='$\\mathit{\\tau}$', ylabel='$\\mathit{J}$') s.plot([0, t], [0, 0], color='grey', linestyle='--', linewidth=0.5) for i, U12 in enumerate([0, 0.3, 0.5, 0.7]): results = get('1d', initial='opposite', gamma=gamma, L_trap=L, t=t, nu=0.1, steps=10000, modes=modes, ensembles=1000, U12=U12) N = L / gamma times = numpy.linspace(0, results['t'], results['samples'] + 1) n0m = numpy.array(results['Nminus_mean']) / N n0e = numpy.array(results['Nminus_std']) / numpy.sqrt( results['ensembles']) / N n1m = numpy.array(results['Nplus_mean']) / N n1e = numpy.array(results['Nplus_std']) / numpy.sqrt( results['ensembles']) / N print(U12, results['errors']['Nminus_mean']) #ax = s.plot(times, n0m, label="$\\nu = {nu}$".format(nu=nu), # color=colors[i], linestyle=linestyles[i], dashes=mpl.dash[linestyles[i]]) ax = s.plot(times, (n1m - n0m) / 4, label="$\\g_{{12}} = {U12} g_{{11}}$".format(U12=U12), color=colors[i], linestyle=linestyles[i], dashes=mpl.dash[linestyles[i]]) #s.plot(times, n0m + n0e, ax[0].get_color() + '--') #s.plot(times, n0m - n0e, ax[0].get_color() + '--') s.set_ylim(-0.5, 0.5) s.set_yticks([-0.5, -0.25, 0, 0.25, 0.5]) #s.legend() fig.tight_layout() fig.savefig('1d_varying_g12' + suffix)
def plot_2d_varying_coupling(): gamma = 0.1 L = 80. modes = 256 t = 25. colors = [mpl.color.f[c].main for c in ('blue', 'red', 'green', 'yellow')] linestyles = ['-', '--', '-.', ':'] print("* 2d_varying_coupling") fig = mpl.figure() s = fig.add_subplot(111, xlabel='$\\mathit{\\tau}$', ylabel='$\\mathit{J}$') s.plot([0, t], [0, 0], color='grey', linestyle='--', linewidth=0.5) for i, nu in enumerate([0.001, 0.01, 0.1, 1]): results = get('2d', initial='opposite', gamma=gamma, L_trap=L, t=t, nu=nu, steps=4000, modes=modes, ensembles=200) N = L**2 / gamma times = numpy.linspace(0, results['t'], results['samples'] + 1) n0m = numpy.array(results['Nminus_mean']) / N n0e = numpy.array(results['Nminus_std']) / numpy.sqrt( results['ensembles']) / N n1m = numpy.array(results['Nplus_mean']) / N n1e = numpy.array(results['Nplus_std']) / numpy.sqrt( results['ensembles']) / N print(nu, results['errors']['Nminus_mean']) ax = s.plot(times, (n1m - n0m) / 4, label="$\\nu = {nu}$".format(nu=nu), color=colors[i], linestyle=linestyles[i], dashes=mpl.dash[linestyles[i]]) #s.plot(times, ((n1m - n0m) / 4 + n0e + n1e), color=ax[0].get_color(), linestyle='--') #s.plot(times, ((n1m - n0m) / 4 - n0e - n1e), color=ax[0].get_color(), linestyle='--') s.set_ylim(-0.5, 0.5) s.set_yticks([-0.5, -0.25, 0, 0.25, 0.5]) fig.tight_layout() fig.savefig('2d_varying_coupling' + suffix)
def plot_1d_density(): gamma = 0.1 L = 80. modes = 256 N = L / gamma results = get('1d', initial='opposite', gamma=gamma, L_trap=L, t=75., nu=0.1, steps=50000, modes=modes, ensembles=1, samples=250) n = numpy.array(results['density']).transpose(1, 0, 2) print("* 1d_density") print(results['errors']['density']) times = numpy.linspace(0, results['t'], results['samples'] + 1) fig = mpl.figure() s = fig.add_subplot(111, xlabel='$\\mathit{\\tau}$', ylabel='$\\mathit{z}$') data = (n[0] - n[1]).T / (4 * N / L) data = numpy.clip(data, -0.5, 0.5) levels = numpy.linspace(-0.5, 0.5, 11) #data = scipy.ndimage.zoom(data, 0.5) data = scipy.ndimage.gaussian_filter(data, sigma=0.5, order=0) im = s.imshow(data, extent=(0, times[-1], -L / 2, L / 2), vmin=-0.5, vmax=0.5, cmap=cmap, interpolation='none', aspect=(results['t']) / L / 1.6) fig.colorbar(im, orientation='vertical', shrink=0.8, ticks=levels).set_label('$\\mathit{j}$') fig.tight_layout() fig.savefig('1d_density' + suffix)
def plot_contents_pic(): modes = 128 L = 80. gamma = 0.1 N = L**2 / gamma samples = 4 results = get('2d', initial='opposite', gamma=gamma, L_trap=L, t=20., nu=0.1, steps=5000, modes=modes, ensembles=1, samples=samples) n = numpy.array(results['density']).transpose(1, 0, 2, 3) print("* contents (2d density)") print(results['errors']['density']) times = numpy.linspace(0, results['t'], results['samples'] + 1) levels = numpy.linspace(-0.5, 0.5, 11) nt = 2 fig = mpl.figure(width=2. / 3, aspect=0.9) s = fig.add_subplot(111) s.set_xticks([]) s.set_yticks([]) data = (n[0][nt] - n[1][nt]).T / (4 * N / (L**2)) data = numpy.clip(data, -0.5, 0.5) #data = scipy.ndimage.zoom(data, 0.25) data = scipy.ndimage.gaussian_filter(data, sigma=0.5, order=0) im = s.imshow(data, extent=(-L / 2, L / 2, -L / 2, L / 2), vmin=-0.5, vmax=0.5, cmap=cmap, interpolation='none', aspect=1) fig.tight_layout() fig.savefig('contents' + suffix)
def plot_1d_no_coupling_varying_L(): gamma = 0.1 L_base = 10. modes_base = 32 t = 25. fig = mpl.figure() colors = [mpl.color.f[c].main for c in ('blue', 'red', 'green', 'yellow')] linestyles = ['-', '--', '-.', ':'] print("* 1d_no_coupling_varying_L") s = fig.add_subplot(111, xlabel='$\\mathit{\\tau}$', ylabel='$\\mathit{J}$') s.plot([0, t], [0, 0], color='grey', linestyle='--', linewidth=0.5) for i, j in enumerate([0, 1, 2, 3]): L = L_base * 2 ** j modes = modes_base * 2 ** j results = get('1d', initial='opposite', gamma=gamma, L_trap=L, t=t, nu=0, steps=10000, modes=modes, ensembles=1000) N = L / gamma times = numpy.linspace(0, results['t'], results['samples'] + 1) n0m = numpy.array(results['Nminus_mean']) / N n0e = numpy.array(results['Nminus_std']) / numpy.sqrt(results['ensembles']) / N n1m = numpy.array(results['Nplus_mean']) / N n1e = numpy.array(results['Nplus_std']) / numpy.sqrt(results['ensembles']) / N print(L, results['errors']['Nminus_mean']) ax = s.plot(times, (n1m - n0m) / 4, label="$L={L},\\,M={M}$".format(L=L, M=modes), color=colors[i], linestyle=linestyles[i], dashes=mpl.dash[linestyles[i]]) #s.plot(times, n0m + n0e, color=ax[0].get_color(), linestyle='--') #s.plot(times, n0m - n0e, color=ax[0].get_color(), linestyle='--') s.set_ylim(-0.5, 0.5) s.set_yticks([-0.5, -0.25, 0, 0.25, 0.5]) #s.legend() fig.tight_layout() fig.savefig('1d_no_coupling_varying_L' + suffix)
def plot_1d_varying_coupling(): gamma = 0.1 L = 80. modes = 256 t = 25. colors = [mpl.color.f[c].main for c in ('blue', 'red', 'green', 'yellow')] linestyles = ['-', '--', '-.', ':'] print("* 1d_varying_coupling") fig = mpl.figure() s = fig.add_subplot(111, xlabel='$\\mathit{\\tau}$', ylabel='$\\mathit{J}$') s.plot([0, t], [0, 0], color='grey', linestyle='--', linewidth=0.5) for i, nu in enumerate([0.0, 0.01, 0.1, 1]): results = get('1d', initial='opposite', gamma=gamma, L_trap=L, t=t, nu=nu, steps=10000, modes=modes, ensembles=1000) N = L / gamma times = numpy.linspace(0, results['t'], results['samples'] + 1) n0m = numpy.array(results['Nminus_mean']) / N n0e = numpy.array(results['Nminus_std']) / numpy.sqrt(results['ensembles']) / N n1m = numpy.array(results['Nplus_mean']) / N n1e = numpy.array(results['Nplus_std']) / numpy.sqrt(results['ensembles']) / N print(nu, results['errors']['Nminus_mean']) #ax = s.plot(times, n0m, label="$\\nu = {nu}$".format(nu=nu), # color=colors[i], linestyle=linestyles[i], dashes=mpl.dash[linestyles[i]]) ax = s.plot(times, (n1m - n0m) / 4, label="$\\nu = {nu}$".format(nu=nu), color=colors[i], linestyle=linestyles[i], dashes=mpl.dash[linestyles[i]]) #s.plot(times, n0m + n0e, ax[0].get_color() + '--') #s.plot(times, n0m - n0e, ax[0].get_color() + '--') s.set_ylim(-0.5, 0.5) s.set_yticks([-0.5, -0.25, 0, 0.25, 0.5]) #s.legend() fig.tight_layout() fig.savefig('1d_varying_coupling' + suffix)
def plot_contents_pic(): modes = 128 L = 80. gamma = 0.1 N = L ** 2 / gamma samples = 4 results = get('2d', initial='opposite', gamma=gamma, L_trap=L, t=20., nu=0.1, steps=5000, modes=modes, ensembles=1, samples=samples) n = numpy.array(results['density']).transpose(1, 0, 2, 3) print("* contents (2d density)") print(results['errors']['density']) times = numpy.linspace(0, results['t'], results['samples'] + 1) levels = numpy.linspace(-0.5, 0.5, 11) nt = 2 fig = mpl.figure(width=2./3, aspect=0.9) s = fig.add_subplot(111) s.set_xticks([]) s.set_yticks([]) data = (n[0][nt] - n[1][nt]).T / (4 * N / (L**2)) data = numpy.clip(data, -0.5, 0.5) #data = scipy.ndimage.zoom(data, 0.25) data = scipy.ndimage.gaussian_filter(data, sigma=0.5, order=0) im = s.imshow(data, extent=(-L/2, L/2, -L/2, L/2), vmin=-0.5, vmax=0.5, cmap=cmap, interpolation='none', aspect=1) fig.tight_layout() fig.savefig('contents' + suffix)
def plot_1d_density(): gamma = 0.1 L = 80. modes = 256 N = L / gamma results = get('1d', initial='opposite', gamma=gamma, L_trap=L, t=75., nu=0.1, steps=50000, modes=modes, ensembles=1, samples=250) n = numpy.array(results['density']).transpose(1, 0, 2) print("* 1d_density") print(results['errors']['density']) times = numpy.linspace(0, results['t'], results['samples'] + 1) fig = mpl.figure() s = fig.add_subplot(111, xlabel='$\\mathit{\\tau}$', ylabel='$\\mathit{z}$') data = (n[0] - n[1]).T / (4 * N / L) data = numpy.clip(data, -0.5, 0.5) levels = numpy.linspace(-0.5, 0.5, 11) #data = scipy.ndimage.zoom(data, 0.5) data = scipy.ndimage.gaussian_filter(data, sigma=0.5, order=0) im = s.imshow(data, extent=(0, times[-1], -L/2, L/2), vmin=-0.5, vmax=0.5, cmap=cmap, interpolation='none', aspect=(results['t']) / L / 1.6) fig.colorbar(im,orientation='vertical', shrink=0.8, ticks=levels).set_label('$\\mathit{j}$') fig.tight_layout() fig.savefig('1d_density' + suffix)
def plot_2d_density_movie(): modes = 128 L = 80. gamma = 0.01 nu = 0.01 t = 300. N = L**2 / gamma samples = 500 results = get('2d', initial='opposite', gamma=gamma, L_trap=L, t=t, nu=nu, steps=40000, modes=modes, ensembles=1, samples=samples) n = numpy.array(results['density']).transpose(1, 0, 2, 3) n_nobs = numpy.array(results['density_nobs']).transpose(1, 0, 2, 3) print("* 2d_density") print(results['errors']['density']) times = numpy.linspace(0, results['t'], results['samples'] + 1) levels = numpy.linspace(-0.5, 0.5, 11) comp = 0 for nt in range(samples + 1): """ fig = mpl.figure(aspect=0.9) s = fig.add_subplot(111, xlabel='$\\mathit{y}$', ylabel='$\\mathit{x}$') data = (n[0][nt] - n[1][nt]).T / (4 * N / (L**2)) data = numpy.clip(data, -0.5, 0.5) levels = numpy.linspace(-0.5, 0.5, 11) #data = scipy.ndimage.zoom(data, 0.5) data = scipy.ndimage.gaussian_filter(data, sigma=0.5, order=0) im = s.contourf( data, extent=(-L/2, L/2, -L/2, L/2), cmap=cmap, extend='both', antialiased=False, aspect=1, levels=levels) t = add_inner_title(s, "$\\tau = %d$" % int(times[nt]), loc=3) t.patch.set_alpha(0.5) fig.tight_layout() fig.savefig('temp/2d_density0_%03d.png' % nt) """ kwds = dict(extent=(-L / 2, L / 2, -L / 2, L / 2), cmap=cmap, interpolation='none', aspect=1) fig = mpl.figure(width=2, aspect=0.35) grid2 = ImageGrid( fig, [0.1, 0.0, 0.8, 1.0], nrows_ncols=(1, 3), direction="row", axes_pad=0.25, add_all=True, label_mode="1", share_all=True, cbar_location="top", cbar_mode="each", cbar_size="7%", cbar_pad="1%", ) grid2[0].set_xlabel('$\\mathit{y}$') grid2[0].set_ylabel('$\\mathit{x}$') s = grid2[0] data = (n[0][nt] - n[1][nt]).T / (4 * N / (L**2)) data = numpy.clip(data, -0.5, 0.5) data = scipy.ndimage.gaussian_filter(data, sigma=0.5, order=0) im = s.imshow(data, vmin=-0.5, vmax=0.5, **kwds) t = add_inner_title(s, "$j$, $\\tau = %d$" % int(times[nt]), loc=3) t.patch.set_alpha(0.5) grid2[0].cax.colorbar(im) s = grid2[1] data = (n_nobs[0][nt]).T / (N / (L**2)) data = numpy.clip(data, 0, 1.5) data = scipy.ndimage.gaussian_filter(data, sigma=0.5, order=0) im = s.imshow(data, vmin=0, vmax=1.5, **kwds) t = add_inner_title(s, "$|\\psi_0|^2$", loc=3) t.patch.set_alpha(0.5) grid2[1].cax.colorbar(im) s = grid2[2] data = (n_nobs[1][nt]).T / (N / (L**2)) data = numpy.clip(data, 0, 1.5) data = scipy.ndimage.gaussian_filter(data, sigma=0.5, order=0) im = s.imshow(data, vmin=0, vmax=1.5, **kwds) t = add_inner_title(s, "$|\\psi_1|^2$", loc=3) t.patch.set_alpha(0.5) grid2[2].cax.colorbar(im) fig.savefig('temp/2d_density0_%03d.png' % nt, dpi=200) os.system("./mencoder.sh 'mf://temp/2d_density0_*.png' 2d_density.avi")
def plot_3d_density(): modes = 128 L = 80. gamma = 0.1 N = L**3 / gamma samples = 4 results = get('3d', initial='opposite', gamma=gamma, L_trap=L, t=20., nu=0.1, steps=5000, modes=modes, ensembles=1, samples=samples) n = numpy.array(results['slice']).transpose(1, 0, 2, 3) print("* 3d_density") print(results['errors']['slice']) times = numpy.linspace(0, results['t'], results['samples'] + 1) levels = numpy.linspace(-0.5, 0.5, 11) fig = mpl.figure(width=2, aspect=0.35) grid2 = ImageGrid( fig, [0.1, 0.0, 0.8, 1.0], nrows_ncols=(1, 3), direction="row", axes_pad=0.2, add_all=True, label_mode="1", share_all=True, cbar_location="right", cbar_mode="single", cbar_size="5%", cbar_pad=0.2, ) grid2[0].set_xlabel('$\\mathit{y}$') grid2[0].set_ylabel('$\\mathit{x}$') for j, nt in enumerate([1, 2, 4]): #s = fig.add_subplot([311, 321, 331][j], xlabel='$\\mathit{y}$', ylabel='$\\mathit{x}$') s = grid2[j] data = (n[0][nt] - n[1][nt]).T / (4 * N / (L**3)) data = numpy.clip(data, -0.5, 0.5) #data = scipy.ndimage.zoom(data, 0.25) data = scipy.ndimage.gaussian_filter(data, sigma=0.5, order=0) im = s.imshow(data, extent=(-L / 2, L / 2, -L / 2, L / 2), vmin=-0.5, vmax=0.5, cmap=cmap, interpolation='none', aspect=1) label = ['$\\tau=5$', '$\\tau=10$', '$\\tau=20$'] fig.text(0.18 + 0.26 * j, 0.9, label[j]) #fig.colorbar(im,orientation='vertical', shrink=0.6, ticks=levels).set_label('$\\mathit{j}$') #fig.tight_layout() grid2[-1].cax.colorbar(im, ticks=levels).set_label_text('$\\mathit{j}$') grid2[-1].cax.toggle_label(True) fig.savefig('3d_density' + suffix) """
def plot_2d_density_movie(): modes = 128 L = 80. gamma = 0.01 nu = 0.01 t = 300. N = L ** 2 / gamma samples = 500 results = get('2d', initial='opposite', gamma=gamma, L_trap=L, t=t, nu=nu, steps=40000, modes=modes, ensembles=1, samples=samples) n = numpy.array(results['density']).transpose(1, 0, 2, 3) n_nobs = numpy.array(results['density_nobs']).transpose(1, 0, 2, 3) print("* 2d_density") print(results['errors']['density']) times = numpy.linspace(0, results['t'], results['samples'] + 1) levels = numpy.linspace(-0.5, 0.5, 11) comp = 0 for nt in range(samples+1): """ fig = mpl.figure(aspect=0.9) s = fig.add_subplot(111, xlabel='$\\mathit{y}$', ylabel='$\\mathit{x}$') data = (n[0][nt] - n[1][nt]).T / (4 * N / (L**2)) data = numpy.clip(data, -0.5, 0.5) levels = numpy.linspace(-0.5, 0.5, 11) #data = scipy.ndimage.zoom(data, 0.5) data = scipy.ndimage.gaussian_filter(data, sigma=0.5, order=0) im = s.contourf( data, extent=(-L/2, L/2, -L/2, L/2), cmap=cmap, extend='both', antialiased=False, aspect=1, levels=levels) t = add_inner_title(s, "$\\tau = %d$" % int(times[nt]), loc=3) t.patch.set_alpha(0.5) fig.tight_layout() fig.savefig('temp/2d_density0_%03d.png' % nt) """ kwds = dict( extent=(-L/2, L/2, -L/2, L/2), cmap=cmap, interpolation='none', aspect=1) fig = mpl.figure(width=2, aspect=0.35) grid2 = ImageGrid(fig, [0.1, 0.0, 0.8, 1.0], nrows_ncols = (1, 3), direction="row", axes_pad = 0.25, add_all=True, label_mode = "1", share_all = True, cbar_location="top", cbar_mode="each", cbar_size="7%", cbar_pad="1%", ) grid2[0].set_xlabel('$\\mathit{y}$') grid2[0].set_ylabel('$\\mathit{x}$') s = grid2[0] data = (n[0][nt] - n[1][nt]).T / (4 * N / (L**2)) data = numpy.clip(data, -0.5, 0.5) data = scipy.ndimage.gaussian_filter(data, sigma=0.5, order=0) im = s.imshow(data, vmin=-0.5, vmax=0.5, **kwds) t = add_inner_title(s, "$j$, $\\tau = %d$" % int(times[nt]), loc=3) t.patch.set_alpha(0.5) grid2[0].cax.colorbar(im) s = grid2[1] data = (n_nobs[0][nt]).T / (N / (L**2)) data = numpy.clip(data, 0, 1.5) data = scipy.ndimage.gaussian_filter(data, sigma=0.5, order=0) im = s.imshow(data, vmin=0, vmax=1.5, **kwds) t = add_inner_title(s, "$|\\psi_0|^2$", loc=3) t.patch.set_alpha(0.5) grid2[1].cax.colorbar(im) s = grid2[2] data = (n_nobs[1][nt]).T / (N / (L**2)) data = numpy.clip(data, 0, 1.5) data = scipy.ndimage.gaussian_filter(data, sigma=0.5, order=0) im = s.imshow(data, vmin=0, vmax=1.5, **kwds) t = add_inner_title(s, "$|\\psi_1|^2$", loc=3) t.patch.set_alpha(0.5) grid2[2].cax.colorbar(im) fig.savefig('temp/2d_density0_%03d.png' % nt, dpi=200) os.system("./mencoder.sh 'mf://temp/2d_density0_*.png' 2d_density.avi")