Example #1
0
    Sz_array = np.zeros([N_iter, L], dtype=np.complex)
    ent_array = np.zeros([N_iter, L - 1], dtype=np.double)
    num_iter_array = np.zeros([N_iter], dtype=np.int)

    ################# INITIALIZATION  ######################
    product_state = [np.array([1., 0.]).reshape([2, 1, 1]) for i in range(L)]
    for dep_idx in range(depth):
        my_circuit.append([qTEBD.random_2site_U(2) for i in range(L - 1)])
        current_depth = dep_idx + 1

    mps_of_layer = qTEBD.circuit_2_mps(my_circuit, product_state)
    mps_of_last_layer = [A.copy() for A in mps_of_layer[current_depth]]

    Sz_array[0, :] = mps_func.expectation_values_1_site(
        mps_of_layer[-1], Sz_list)
    ent_array[0, :] = mps_func.get_entanglement(mps_of_last_layer)
    fidelity_reached = np.abs(mps_func.overlap(target_mps,
                                               mps_of_last_layer))**2
    error_list.append(1. - fidelity_reached)

    stop_crit = 1e-1
    assert np.isclose(mps_func.overlap(target_mps, target_mps), 1.)
    for idx in range(0, N_iter):
        #################################
        #### variational optimzation ####
        #################################
        mps_of_last_layer, my_circuit = qTEBD.var_circuit(
            target_mps, mps_of_last_layer, my_circuit, product_state)
        #################
        #### Measure ####
        #################
Example #2
0
        mps_func.right_canonicalize(trunc_mps, no_trunc=True)
        print("trunc_error : ", trunc_error)
        target_mps_ = mps_func.plr_2_lpr(target_mps)
        trunc_mps_ = mps_func.plr_2_lpr(trunc_mps)
        trunc_error_ = mps_func.MPS_compression_variational(trunc_mps_,
                                                            target_mps_,
                                                            verbose=1)
        print("trunc_error (var) : ", trunc_error_)

        trunc_mps = mps_func.lpr_2_plr(trunc_mps_)
        mps_func.left_canonicalize(trunc_mps, no_trunc=True)

        E_list.append(np.sum(mps_func.expectation_values(trunc_mps, H_list)))
        Sz_array[T_idx, :] = mps_func.expectation_values_1_site(
            trunc_mps, Sz_list)
        ent_array[T_idx, :] = mps_func.get_entanglement(trunc_mps)
        # print("ENTANGLEMENT !!!!! : ", mps_func.get_entanglement(trunc_mps))
        fidelity_reached = np.abs(mps_func.overlap(target_mps, trunc_mps))**2
        error_list.append(1. - fidelity_reached)
        t_list.append(T)

        # trunc_mps_dir_path = 'data_tebd_dt%e/1d_%s_g%.4f_h%.4f/L%d/trunc_wf_chi%d_%s/' % (data_dt, Hamiltonian, g, h, L, new_chi, data_order)
        # if not os.path.exists(trunc_mps_dir_path):
        #     os.makedirs(trunc_mps_dir_path)

        # filename = trunc_mps_dir_path + 'T%.1f.pkl' % T
        # pickle.dump(trunc_mps, open(filename, 'wb'))

    num_data = len(t_list)
    assert num_data > 0
    Sz_array = Sz_array[:num_data, :]
Example #3
0
        mps_func.right_canonicalize(trunc_mps, no_trunc=True)
        trunc_mps, trunc_error = mps_func.left_canonicalize(trunc_mps, no_trunc=False, chi=new_chi)
        mps_func.right_canonicalize(trunc_mps, no_trunc=True)
        print("trunc_error : ", trunc_error)
        target_mps_ = mps_func.plr_2_lpr(target_mps)
        trunc_mps_ = mps_func.plr_2_lpr(trunc_mps)
        trunc_error_ = mps_func.MPS_compression_variational(trunc_mps_, target_mps_, verbose=1)
        print("trunc_error (var) : ", trunc_error_)

        trunc_mps = mps_func.lpr_2_plr(trunc_mps_)
        mps_func.left_canonicalize(trunc_mps, no_trunc=True)


        E_list.append(np.sum(mps_func.expectation_values(trunc_mps, H_list)))
        Sz_array[T_idx, :] = mps_func.expectation_values_1_site(trunc_mps, Sz_list)
        ent_array[T_idx, :] = mps_func.get_entanglement(trunc_mps)
        print("ENTANGLEMENT !!!!! : ", mps_func.get_entanglement(trunc_mps))
        fidelity_reached = np.abs(mps_func.overlap(target_mps, trunc_mps))**2
        error_list.append(1. - fidelity_reached)
        t_list.append(T)

        trunc_mps_dir_path = '../2_time_evolution/data_tebd/1d_%s_g%.4f_h%.4f/L%d/trunc_wf_chi%d_1st/' % (Hamiltonian, g, h, L, new_chi)
        if not os.path.exists(trunc_mps_dir_path):
            os.makedirs(trunc_mps_dir_path)

        filename = trunc_mps_dir_path + 'T%.1f.pkl' % T
        pickle.dump(trunc_mps, open(filename, 'wb'))

    num_data = len(t_list)
    assert num_data > 0
    Sz_array = Sz_array[:num_data, :]