Example #1
0
def run(project_dir, gpu_mon, logger, args):
    """
    Runs training of a model in a mpunet project directory.

    Args:
        project_dir: A path to a mpunet project
        gpu_mon: An initialized GPUMonitor object
        logger: A mpunet logging object
        args: argparse arguments
    """
    # Read in hyperparameters from YAML file
    from mpunet.hyperparameters import YAMLHParams
    hparams = YAMLHParams(project_dir + "/train_hparams.yaml", logger=logger)
    validate_hparams(hparams)

    # Wait for PID to terminate before continuing?
    if args.wait_for:
        from mpunet.utils import await_PIDs
        await_PIDs(args.wait_for)

    # Prepare sequence generators and potential model specific hparam changes
    train, val, hparams = get_data_sequences(project_dir=project_dir,
                                             hparams=hparams,
                                             logger=logger,
                                             args=args)

    # Set GPU visibility and create model with MirroredStrategy
    set_gpu(gpu_mon, args)
    import tensorflow as tf
    with tf.distribute.MirroredStrategy().scope():
        model = get_model(project_dir=project_dir,
                          train_seq=train,
                          hparams=hparams,
                          logger=logger,
                          args=args)

        # Get trainer and compile model
        from mpunet.train import Trainer
        trainer = Trainer(model, logger=logger)
        trainer.compile_model(n_classes=hparams["build"].get("n_classes"),
                              reduction=tf.keras.losses.Reduction.NONE,
                              **hparams["fit"])

    # Debug mode?
    if args.debug:
        from tensorflow.python import debug as tfdbg
        from tensorflow.keras import backend as K
        K.set_session(tfdbg.LocalCLIDebugWrapperSession(K.get_session()))

    # Fit the model
    _ = trainer.fit(train=train,
                    val=val,
                    train_im_per_epoch=args.train_images_per_epoch,
                    val_im_per_epoch=args.val_images_per_epoch,
                    hparams=hparams,
                    no_im=args.no_images,
                    **hparams["fit"])
    save_final_weights(model, project_dir, logger)
Example #2
0
def copy_yaml_and_set_data_dirs(in_path, out_path, data_dir):
    from mpunet.hyperparameters import YAMLHParams
    hparams = YAMLHParams(in_path, no_log=True, no_version_control=True)
    dir_name = "base_dir" if "base_dir" in hparams["train_data"] else "data_dir"

    # Set values in parameter file and save to new location
    data_ids = ("train", "val", "test") + (
        ("aug", ) if hparams.get("aug_data") else ())
    for dataset in data_ids:
        path = (data_dir + "/{}".format(dataset)) if data_dir else "Null"
        dataset = dataset + "_data"
        if not hparams.get(dataset) or not hparams[dataset].get("base_dir"):
            try:
                hparams.set_value(dataset, dir_name, path, True, True)
            except AttributeError:
                print("[!] Subdir {} does not exist.".format(dataset))
    hparams.save_current(out_path)
Example #3
0
def entry_func(args=None):

    # Project base path
    args = vars(get_argparser().parse_args(args))
    basedir = os.path.abspath(args["project_dir"])
    overwrite = args["overwrite"]
    continue_training = args["continue_training"]
    eval_prob = args["eval_prob"]
    await_PID = args["wait_for"]
    dice_weight = args["dice_weight"]
    print("Fitting fusion model for project-folder: %s" % basedir)

    # Minimum images in validation set before also using training images
    min_val_images = 15

    # Fusion model training params
    epochs = args['epochs']
    fm_batch_size = args["batch_size"]

    # Early stopping params
    early_stopping = args["early_stopping"]

    # Wait for PID?
    if await_PID:
        from mpunet.utils import await_PIDs
        await_PIDs(await_PID)

    # Fetch GPU(s)
    num_GPUs = args["num_GPUs"]
    force_gpu = args["force_GPU"]
    # Wait for free GPU
    if not force_gpu:
        await_and_set_free_gpu(N=num_GPUs, sleep_seconds=120)
    else:
        set_gpu(force_gpu)

    # Get logger
    logger = Logger(base_path=basedir,
                    active_file="train_fusion",
                    overwrite_existing=overwrite)

    # Get YAML hyperparameters
    hparams = YAMLHParams(os.path.join(basedir, "train_hparams.yaml"))

    # Get some key settings
    n_classes = hparams["build"]["n_classes"]

    if hparams["build"]["out_activation"] == "linear":
        # Trained with logit targets?
        hparams["build"][
            "out_activation"] = "softmax" if n_classes > 1 else "sigmoid"

    # Get views
    views = np.load("%s/views.npz" % basedir)["arr_0"]
    del hparams["fit"]["views"]

    # Get weights and set fusion (output) path
    weights = get_best_model("%s/model" % basedir)
    weights_name = os.path.splitext(os.path.split(weights)[-1])[0]
    fusion_weights = "%s/model/fusion_weights/" \
                     "%s_fusion_weights.h5" % (basedir, weights_name)
    create_folders(os.path.split(fusion_weights)[0])

    # Log a few things
    log(logger, hparams, views, weights, fusion_weights)

    # Check if exists already...
    if not overwrite and os.path.exists(fusion_weights):
        from sys import exit
        print("\n[*] A fusion weights file already exists at '%s'."
              "\n    Use the --overwrite flag to overwrite." % fusion_weights)
        exit(0)

    # Load validation data
    images = ImagePairLoader(**hparams["val_data"], logger=logger)
    is_validation = {m.identifier: True for m in images}

    # Define random sets of images to train on simul. (cant be all due
    # to memory constraints)
    image_IDs = [m.identifier for m in images]

    if len(images) < min_val_images:
        # Pick N random training images
        diff = min_val_images - len(images)
        logger("Adding %i training images to set" % diff)

        # Load the training data and pick diff images
        train = ImagePairLoader(**hparams["train_data"], logger=logger)
        indx = np.random.choice(np.arange(len(train)),
                                diff,
                                replace=diff > len(train))

        # Add the images to the image set set
        train_add = [train[i] for i in indx]
        for m in train_add:
            is_validation[m.identifier] = False
            image_IDs.append(m.identifier)
        images.add_images(train_add)

    # Append to length % sub_size == 0
    sub_size = args["images_per_round"]
    rest = int(sub_size * np.ceil(len(image_IDs) / sub_size)) - len(image_IDs)
    if rest:
        image_IDs += list(np.random.choice(image_IDs, rest, replace=False))

    # Shuffle and split
    random.shuffle(image_IDs)
    sets = [
        set(s) for s in np.array_split(image_IDs,
                                       len(image_IDs) / sub_size)
    ]
    assert (contains_all_images(sets, image_IDs))

    # Define fusion model (named 'org' to store reference to orgiginal model if
    # multi gpu model is created below)
    fusion_model = FusionModel(n_inputs=len(views),
                               n_classes=n_classes,
                               weight=dice_weight,
                               logger=logger,
                               verbose=False)

    if continue_training:
        fusion_model.load_weights(fusion_weights)
        print("\n[OBS] CONTINUED TRAINING FROM:\n", fusion_weights)

    import tensorflow as tf
    with tf.distribute.MirroredStrategy().scope():
        # Define model
        unet = init_model(hparams["build"], logger)
        print("\n[*] Loading weights: %s\n" % weights)
        unet.load_weights(weights, by_name=True)

    # Compile the model
    logger("Compiling...")
    metrics = [
        "sparse_categorical_accuracy", sparse_fg_precision, sparse_fg_recall
    ]
    fusion_model.compile(optimizer=Adam(lr=1e-3),
                         loss=fusion_model.loss,
                         metrics=metrics)
    fusion_model._log()

    try:
        _run_fusion_training(sets, logger, hparams, min_val_images,
                             is_validation, views, n_classes, unet,
                             fusion_model, early_stopping, fm_batch_size,
                             epochs, eval_prob, fusion_weights)
    except KeyboardInterrupt:
        pass
    finally:
        if not os.path.exists(os.path.split(fusion_weights)[0]):
            os.mkdir(os.path.split(fusion_weights)[0])
        # Save fusion model weights
        # OBS: Must be original model if multi-gpu is performed!
        fusion_model.save_weights(fusion_weights)
Example #4
0
def load_hparams(base_dir):
    from mpunet.hyperparameters import YAMLHParams
    return YAMLHParams(os.path.join(base_dir, "train_hparams.yaml"))
Example #5
0
def entry_func(args=None):

    # Get command line arguments
    args = vars(get_argparser().parse_args(args))
    base_dir = os.path.abspath(args["project_dir"])
    _file = args["f"]
    label = args["l"]
    N_extra = args["extra"]
    try:
        N_extra = int(N_extra)
    except ValueError:
        pass

    # Get settings from YAML file
    from mpunet.hyperparameters import YAMLHParams
    hparams = YAMLHParams(os.path.join(base_dir, "train_hparams.yaml"))

    # Set strides
    hparams["fit"]["strides"] = args["strides"]

    if not _file:
        try:
            # Data specified from command line?
            data_dir = os.path.abspath(args["data_dir"])

            # Set with default sub dirs
            hparams["test_data"] = {
                "base_dir": data_dir,
                "img_subdir": "images",
                "label_subdir": "labels"
            }
        except (AttributeError, TypeError):
            data_dir = hparams["test_data"]["base_dir"]
    else:
        data_dir = False
    out_dir = os.path.abspath(args["out_dir"])
    overwrite = args["overwrite"]
    predict_mode = args["no_eval"]
    save_only_pred = args["save_only_pred"]

    # Check if valid dir structures
    validate_folders(base_dir, data_dir, out_dir, overwrite)

    # Import all needed modules (folder is valid at this point)
    import numpy as np
    from mpunet.image import ImagePairLoader, ImagePair
    from mpunet.utils import get_best_model, create_folders, \
                                    pred_to_class, await_and_set_free_gpu, set_gpu
    from mpunet.utils.fusion import predict_3D_patches, predict_3D_patches_binary, pred_3D_iso
    from mpunet.logging import init_result_dict_3D, save_all_3D
    from mpunet.evaluate import dice_all
    from mpunet.bin.predict import save_nii_files

    # Fetch GPU(s)
    num_GPUs = args["num_GPUs"]
    force_gpu = args["force_GPU"]
    # Wait for free GPU
    if force_gpu == -1:
        await_and_set_free_gpu(N=num_GPUs, sleep_seconds=240)
    else:
        set_gpu(force_gpu)

    # Read settings from the project hyperparameter file
    dim = hparams["build"]["dim"]
    n_classes = hparams["build"]["n_classes"]
    mode = hparams["fit"]["intrp_style"]

    # Set ImagePairLoader object
    if not _file:
        image_pair_loader = ImagePairLoader(predict_mode=predict_mode,
                                            **hparams["test_data"])
    else:
        predict_mode = not bool(label)
        image_pair_loader = ImagePairLoader(predict_mode=predict_mode,
                                            initialize_empty=True)
        image_pair_loader.add_image(ImagePair(_file, label))
    all_images = {
        image.identifier: image
        for image in image_pair_loader.images
    }

    # Set scaler and bg values
    image_pair_loader.set_scaler_and_bg_values(
        bg_value=hparams.get_from_anywhere('bg_value'),
        scaler=hparams.get_from_anywhere('scaler'),
        compute_now=False)

    # Init LazyQueue and get its sequencer
    from mpunet.sequences.utils import get_sequence
    seq = get_sequence(data_queue=image_pair_loader,
                       is_validation=True,
                       **hparams["fit"],
                       **hparams["build"])
    """ Define UNet model """
    from mpunet.models import model_initializer
    hparams["build"]["batch_size"] = 1
    unet = model_initializer(hparams, False, base_dir)
    model_path = get_best_model(base_dir + "/model")
    unet.load_weights(model_path)

    # Evaluate?
    if not predict_mode:
        # Prepare dictionary to store results in pd df
        results, detailed_res = init_result_dict_3D(all_images, n_classes)

        # Save to check correct format
        save_all_3D(results, detailed_res, out_dir)

    # Define result paths
    nii_res_dir = os.path.join(out_dir, "nii_files")
    create_folders(nii_res_dir)

    image_ids = sorted(all_images)
    for n_image, image_id in enumerate(image_ids):
        print("\n[*] Running on: %s" % image_id)

        with seq.image_pair_queue.get_image_by_id(image_id) as image_pair:
            if mode.lower() == "iso_live_3d":
                pred = pred_3D_iso(model=unet,
                                   sequence=seq,
                                   image=image_pair,
                                   extra_boxes=N_extra,
                                   min_coverage=None)
            else:
                # Predict on volume using model
                if n_classes > 1:
                    pred = predict_3D_patches(model=unet,
                                              patches=seq,
                                              image=image_pair,
                                              N_extra=N_extra)
                else:
                    pred = predict_3D_patches_binary(model=unet,
                                                     patches=seq,
                                                     image_id=image_id,
                                                     N_extra=N_extra)

            if not predict_mode:
                # Get patches for the current image
                y = image_pair.labels

                # Calculate dice score
                print("Mean dice: ", end="", flush=True)
                p = pred_to_class(pred, img_dims=3, has_batch_dim=False)
                dices = dice_all(y, p, n_classes=n_classes, ignore_zero=True)
                mean_dice = dices[~np.isnan(dices)].mean()
                print("Dices: ", dices)
                print("%s (n=%i)" % (mean_dice, len(dices)))

                # Add to results
                results[image_id] = [mean_dice]
                detailed_res[image_id] = dices

                # Overwrite with so-far results
                save_all_3D(results, detailed_res, out_dir)

                # Save results
                save_nii_files(p, image_pair, nii_res_dir, save_only_pred)

    if not predict_mode:
        # Write final results
        save_all_3D(results, detailed_res, out_dir)
Example #6
0
def prepare_for_multi_task_2d(hparams, just_one=False, no_val=False, logger=None,
                              continue_training=None, base_path="./"):
    from mpunet.hyperparameters import YAMLHParams
    # Get image loaders for all tasks
    tasks = []
    for name, task_hparam_file in zip(*hparams["tasks"].values()):
        task_hparams = YAMLHParams(task_hparam_file)
        type_ = 'multi_task_2d'
        train_data, val_data, logger, auditor = _base_loader_func(task_hparams,
                                                                  just_one,
                                                                  no_val,
                                                                  logger,
                                                                  mtype=type_)

        task = {
            "name": name,
            "hparams": task_hparams,
            "train": train_data,
            "val": val_data
        }
        tasks.append(task)

    # Set various build hparams
    fetch = ("n_classes", "dim", "n_channels",
             "out_activation", "biased_output_layer")
    field = "task_specifics"
    for f in fetch:
        hparams["build"][f] = tuple([t["hparams"][field][f] for t in tasks])

    # Add task names to build dir
    hparams["build"]["task_names"] = hparams["tasks"]["task_names"]

    # Load or create a set of views (determined by 'continue_training')
    # This function will add the views to hparams["fit"]["views"] and
    # store the views on disk at base_path/views.npz.
    load_or_create_views(hparams=hparams,
                         continue_training=continue_training,
                         logger=logger,
                         base_path=base_path,
                         auditor=None)

    # Get per-task sequences
    train_seqs = []
    val_seqs = []
    for task in tasks:
        logger("Fetching sequences for task %s" % task["name"])

        # Create hparams dict that combines the common hparams and
        # task-specific hparams
        task_hparams = dict(hparams["fit"])
        task_hparams.update(task["hparams"]["task_specifics"])

        # Get sequences for training and validation
        train = task["train"].get_sequencer(is_validation=False, **task_hparams)
        val = task["val"].get_sequencer(is_validation=True, **task_hparams)

        # Add to lists
        train_seqs.append(train)
        val_seqs.append(val)

    # Create the training and validation sequences
    # These will produce batches shared across the N tasks
    from mpunet.sequences import MultiTaskSequence
    train = MultiTaskSequence(train_seqs, hparams["build"]["task_names"])
    val = MultiTaskSequence(val_seqs, hparams["build"]["task_names"])

    return train, val, hparams