Example #1
0
    def load_mask(self, image_id):
        """ Generate instance masks for an image.
				Returns:
					masks: A bool array of shape [height, width, instance count] with one mask per instance.
					class_ids: a 1D array of class IDs of the instance masks.
		"""
        # If not a sidelobe dataset image, delegate to parent class.
        image_info = self.image_info[image_id]
        if image_info["source"] != "sidelobe":
            return super(self.__class__, self).load_mask(image_id)

        # Set bitmap mask of shape [height, width, instance_count]
        info = self.image_info[image_id]
        filename = info["path_mask"]
        class_id = info["class_id"]

        # Read mask
        data, header = utils.read_fits(filename,
                                       stretch=False,
                                       normalize=False,
                                       convertToRGB=False)
        height = data.shape[0]
        width = data.shape[1]

        data = data.astype(np.bool)

        mask = np.zeros([height, width, 1], dtype=np.bool)
        mask[:, :, 0] = data

        instance_counts = np.full([mask.shape[-1]], class_id, dtype=np.int32)

        # Return mask, and array of class IDs of each instance
        return mask, instance_counts
Example #2
0
	def load_image(self, image_id):
		"""Load the specified image and return a [H, W, 1] Numpy array."""
		
		# Load image
		filename = self.image_info[image_id]['path']
		convertToRGB: bool = False
		image, header = utils.read_fits(filename, stretch=True, normalize=True, convertToRGB=convertToRGB)
		if not convertToRGB:
			image = np.expand_dims(image, axis=2)
				
		return image
Example #3
0
    def load_image(self, image_id):
        """Load the specified image and return a [H,W,3] Numpy array."""

        # Load image
        filename = self.image_info[image_id]['path']
        image, header = utils.read_fits(filename,
                                        stretch=True,
                                        normalize=True,
                                        convertToRGB=True)

        return image
Example #4
0
	def load_gt_mask(self, image_id):
		""" Load gt mask """

		# Read filename
		info = self.image_info[image_id]
		filename = info["path_mask"]
		class_id = info["class_id"]

		# Read mask
		data, header = utils.read_fits(filename, stretch=False, normalize=False, convertToRGB=False)
		height = data.shape[0]
		width = data.shape[1]
		data = data.astype(np.bool)
		
		mask = np.zeros([height, width, 1], dtype=np.bool)
		mask[:, :, 0] = data
	
		return mask
Example #5
0
    def load_image(self, image_id):
        """Load the specified image and return a [H,W,3] Numpy array."""
        # Load image
        filename = self.image_info[image_id]['path']

        image, header = utils.read_fits(filename,
                                        stretch=True,
                                        normalize=True,
                                        convertToRGB=True)

        #image = skimage.io.imread(filename)

        # If grayscale. Convert to RGB for consistency.
        #if image.ndim != 3:
        #	image = skimage.color.gray2rgb(image)
        # If has an alpha channel, remove it for consistency
        #if image.shape[-1] == 4:
        #	image = image[..., :3]

        return image
Example #6
0
def detect_and_color_splash(model, image_path):

    # Run model detection and generate the color splash effect
    print("Running on {}".format(args.image))

    # Read image
    #image = skimage.io.imread(args.image)
    image, header = utils.read_fits(filename=image_path,
                                    stretch=True,
                                    normalize=True,
                                    convertToRGB=True)

    # Detect objects
    r = model.detect([image], verbose=1)[0]

    # Color splash
    splash = color_splash(image, r['masks'])

    # Save output
    file_name = "splash_{:%Y%m%dT%H%M%S}.png".format(datetime.datetime.now())
    skimage.io.imsave(file_name, splash)
Example #7
0
	def read_img(self):
		""" Read input FITS image """
	
		res= utils.read_fits(
			self.image_path,
			stretch=False,
			normalize=False,
			convertToRGB=False
		)
	
		if not res:
			logger.error("Failed to read image %s!" % self.image_path)
			return -1

		self.img_data= res[0]
		self.img_header= res[1]
		self.nx= self.img_data.shape[1]
		self.ny= self.img_data.shape[0]

		logger.info("Input image %s has size %d x %d..." % (self.image_path,self.nx,self.ny))

		return 0