Example #1
0
def display_samples():
    image_ids = np.random.choice(dataset_train.image_ids, 4)
    for image_id in image_ids:
        image = dataset_train.load_image(image_id)
        mask, class_ids = dataset_train.load_mask(image_id)
        visualize.display_top_masks(image, mask, class_ids,
                                    dataset_train.class_names)
Example #2
0
def display_dataset(num_of_random_samples):
    # Load and display random samples
    if num_of_random_samples >= len(dataset.image_ids):
        print(
            "The number of samples cannot be larger than the amount of samples available"
        )
        print("\nSetting the amount of equal to the amount of samples")
        num_of_random_samples = len(dataset.image_ids) - 1

    image_ids = np.random.choice(dataset.image_ids, num_of_random_samples)

    for image_id in image_ids:
        image = dataset.load_image(image_id)
        mask, class_ids = dataset.load_mask(image_id)
        visualize.display_top_masks(image, mask, class_ids,
                                    dataset.class_names)

    # Load random image and mask.
    image_id = random.choice(dataset.image_ids)
    image = dataset.load_image(image_id)
    mask, class_ids = dataset.load_mask(image_id)
    # Compute Bounding box
    bbox = utils.extract_bboxes(mask)

    # Display image and additional stats
    print("image_id ", image_id, dataset.image_reference(image_id))
    log("image", image)
    log("mask", mask)
    log("class_ids", class_ids)
    log("bbox", bbox)
    # Display image and instances
    visualize.display_instances(image, bbox, mask, class_ids,
                                dataset.class_names)
def load_and_display_random_sample(dataset, datacfg, N=2):
  """Load and display random samples
  """
  log.info("load_and_display_random_sample::-------------------------------->")

  image_ids = np.random.choice(dataset.image_ids, N)
  class_names = dataset.class_names
  log.debug("dataset: len(image_ids): {}\nimage_ids: {}".format(len(image_ids), image_ids))
  log.debug("dataset: len(class_names): {}\nclass_names: {}".format(len(class_names), class_names))

  for image_id in image_ids:
    image = dataset.load_image(image_id, datacfg)
    mask, class_ids, keys, values = dataset.load_mask(image_id, datacfg)

    log.debug("keys: {}".format(keys))
    log.debug("values: {}".format(values))
    log.debug("class_ids: {}".format(class_ids))

    ## Display image and instances
    visualize.display_top_masks(image, mask, class_ids, class_names)
    ## Compute Bounding box
    
    bbox = utils.extract_bboxes(mask)
    log.debug("bbox: {}".format(bbox))
    visualize.display_instances(image, bbox, mask, class_ids, class_names)
Example #4
0
def train(model):
    """Train the model."""
    # Training dataset.
    dataset_train = DangerDataset()
    dataset_train.load_danger(args.dataset, "train")
    dataset_train.prepare()

    # Validation dataset
    dataset_val = DangerDataset()
    dataset_val.load_danger(args.dataset, "val")
    dataset_val.prepare()

    image_ids = np.random.choice(dataset_train.image_ids, 1)
    for image_id in image_ids:
        image = dataset_train.load_image(image_id)
        mask, class_ids = dataset_train.load_mask(image_id)
        visualize.display_top_masks(image, mask, class_ids,
                                    dataset_train.class_names)
    # *** This training schedule is an example. Update to your needs ***
    # Since we're using a very small dataset, and starting from
    # COCO trained weights, we don't need to train too long. Also,
    # no need to train all layers, just the heads should do it.
    print("Training network heads")
    model.train(dataset_train,
                dataset_val,
                learning_rate=config.LEARNING_RATE,
                epochs=1,
                layers='heads')
Example #5
0
def show_data():
    dataset_train, dataset_val = load_data()
    image_ids = np.random.choice(dataset_train.image_ids, 4)
    for image_id in image_ids:
        image = dataset_train.load_image(image_id)
        mask, class_ids = dataset_train.load_mask(image_id)
        visualize.display_top_masks(image, mask, class_ids,
                                    dataset_train.class_names)
 def display_mask(self):
     """ Display the image with mask randomly inside the dataset.
     """
     image_ids = np.random.choice(self.image_ids, 4)
     for image_id in image_ids:
         image = self.load_image(image_id)
         mask, class_ids = self.load_mask(image_id)
         visualize.display_top_masks(image, mask, class_ids, self.class_names)
Example #7
0
def display_mask():
    # Load and display random samples
    image_ids = np.random.choice(dataset.image_ids, 4)
    for image_id in image_ids:
        image = dataset.load_image(image_id)
        mask, class_ids = dataset.load_mask(image_id)
        # 显示面积最大的 limit(默认为4) 个 class 的 mask
        visualize.display_top_masks(image, mask, class_ids,
                                    dataset.class_names)
Example #8
0
def detect(model, dataset, image_id):
    image = dataset.load_image(image_id)
    mask, class_ids = dataset.load_mask(image_id)

    visualize.display_top_masks(image, mask, class_ids, dataset.class_names)

    results = model.detect([image], verbose=1)

    # Visualize results
    r = results[0]
    visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'],
                                ["BG", "infection"], r['scores'])
def sample_dataset(dataset):
    for i in range(6):
        image_id = random.choice(dataset.image_ids)
        print("ImageId: {}\n".format(image_id))
        print(dataset.image_reference(image_id))

        image = dataset.load_image(image_id)
        mask, class_ids = dataset.load_mask(image_id)
        visualize.display_top_masks(image,
                                    mask,
                                    class_ids,
                                    dataset.class_names,
                                    limit=4)
Example #10
0
    def show(self, howmany=1):
        '''
        '''
        image_ids = np.random.choice(self.image_ids, howmany)

        for image_id in image_ids:

            image = self.load_image(image_id)

            mask, class_ids = self.load_mask(image_id)

            visualize.display_top_masks(image, mask, class_ids,
                                        self.class_names)
Example #11
0
def train(model):
    """Train the model."""
    # Training dataset.
    dataset_train = ObjectDetectionDataset()  # This is a class
    dataset_train.load_objects(args.dataset, "training")
    dataset_train.prepare()

    # Validation dataset
    dataset_val = ObjectDetectionDataset()  # This is a class
    dataset_val.load_objects(args.dataset, "valing")
    dataset_val.prepare()
    '''
    show and display random samples
    '''
    # Load and display random samples
    image_ids = np.random.choice(dataset_train.image_ids, 4)

    print("####")
    print("all image loaded", dataset_train.image_ids)
    print("images selected to show", image_ids)
    for image_id in image_ids:
        # print(image_id)
        image = dataset_train.load_image(image_id)
        print(image.shape)

        # cv2.imshow('image', image)
        # cv2.waitKey(0)
        # cv2.destroyAllWindows()
        # img_s = [image]
        # titles = ['img']
        mask, class_ids = dataset_train.load_mask(image_id)
        visualize.display_top_masks(image, mask, class_ids,
                                    dataset_train.class_names)
        # print(dataset_train.class_names)
        # print(class_ids)
        # visualize.display_top_masks(image, mask, class_ids, dataset_train.class_names, limit=5)

    # *** This training schedule is an example. Update to your needs ***
    # Since we're using a very small dataset, and starting from
    # COCO trained weights, we don't need to train too long. Also,
    # no need to train all layers, just the heads should do it.
    print("Training **ALL** networks!")
    model.train(dataset_train,
                dataset_val,
                learning_rate=config.LEARNING_RATE,
                epochs=150,
                layers='all')
Example #12
0
def display_datasets(dataset_train, dataset_val):

    print("Training dataset\nImages: {}\nClasses: {}".format(
        len(dataset_train.image_ids), dataset_train.class_names))
    print("Validation dataset\nImages: {}\nClasses: {}".format(
        len(dataset_val.image_ids), dataset_val.class_names))

    for name, dataset in [('training', dataset_train),
                          ('validation', dataset_val)]:
        print(f'Displaying examples from {name} dataset:')

        image_ids = np.random.choice(dataset.image_ids, 3)
        for image_id in image_ids:
            image = dataset.load_image(image_id)
            mask, class_ids = dataset.load_mask(image_id)
            visualize.display_top_masks(image, mask, class_ids,
                                        dataset.class_names)
Example #13
0
def detect_image(model, filename):
    image = np.flip(
        skimage.color.gray2rgb(skimage.io.imread(filename + ".tif") * 255), 1)

    masked_arr = np.load(filename + ".mask")
    mask = np.flip(np.expand_dims(masked_arr[0], axis=2), 1)

    visualize.display_top_masks(image, mask,
                                np.ones([mask.shape[-1]], dtype=np.int32),
                                ["BG", "infection"])

    results = model.detect([image], verbose=1)
    # Visualize results
    r = results[0]

    visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'],
                                ["BG", "infection"], r['scores'])
Example #14
0
def random_detect(dataset_val, inference_config, model, count: int = 5):
    for i in range(0, count):
        # Test on a random image
        image_id = np.random.choice(dataset_val.image_ids)
        original_image, image_meta, gt_class_id, gt_bbox, gt_mask = \
            modellib.load_image_gt(dataset_val, inference_config,
                                   image_id, use_mini_mask = False)

        log("original_image", original_image)
        log("image_meta", image_meta)
        log("gt_class_id", gt_class_id)
        log("gt_bbox", gt_bbox)
        log("gt_mask", gt_mask)

        image = dataset_val.load_image(image_id)
        mask, class_ids = dataset_val.load_mask(image_id)

        image = map_image_to_rgb(image)
        visualize.display_top_masks(image, mask, class_ids, dataset_val.class_names, limit = 1)

        results = model.detect([original_image], verbose=1)
        r = results[0]
        disp_oritinal_image = map_image_to_rgb(original_image)
        visualize.display_instances(disp_oritinal_image, r['rois'], r['masks'], r['class_ids'], dataset_val.class_names, r['scores'], ax = get_ax())
Example #15
0
		# load the 0-th training image and corresponding masks and
		# class IDs in the masks
		image = trainDataset.load_image(0)
		(masks, classIDs) = trainDataset.load_mask(0)

		# show the image spatial dimensions which is HxWxC
		print("[INFO] image shape: {}".format(image.shape))

		# show the masks shape which should have the same width and
		# height of the images but the third dimension should be
		# equal to the total number of instances in the image itself
		print("[INFO] masks shape: {}".format(masks.shape))

		# show the length of the class IDs list along with the values
		# inside the list -- the length of the list should be equal
		# to the number of instances dimension in the 'masks' array
		print("[INFO] class IDs length: {}".format(len(classIDs)))
		print("[INFO] class IDs: {}".format(classIDs))

		# determine a sample of training image indexes and loop over
		# them
		for i in np.random.choice(trainDataset.image_ids, 100):
			# load the image and masks for the sampled image
			print("[INFO] investigating image index: {}".format(i))
			image = trainDataset.load_image(i)
			(masks, classIDs) = trainDataset.load_mask(i)

			# visualize the masks for the current image
			visualize.display_top_masks(image, masks, classIDs,
				trainDataset.class_names)
train_dataset = CloudDataset(df[:training_set_size])
train_dataset.prepare()

valid_dataset = CloudDataset(df[training_set_size:training_set_size+validation_set_size])
valid_dataset.prepare()

#%%

#VISUALIZE image with masks ###################################################
for i in range(5):
    image_id = random.choice(train_dataset.image_ids)
    print(train_dataset.image_reference(image_id))
    
    image = train_dataset.load_image(image_id)
    mask, class_ids = train_dataset.load_mask(image_id)
    visualize.display_top_masks(image, mask, class_ids, train_dataset.class_names, limit=5)

    
#%%
    
#TRAIN##########################################################################
    
LR = 1e-4
import warnings 
from imgaug import augmenters as iaa
warnings.filterwarnings("ignore")

augmentation = iaa.Sequential([
    iaa.Fliplr(0.5),
    iaa.Flipud(0.5),iaa.OneOf([ 
        iaa.Multiply((0.9, 1.1)),
Example #17
0
# Validation dataset
# dataset_val = ShapesDataset()
# dataset_val.load_shapes(50, config.IMAGE_SHAPE[0], config.IMAGE_SHAPE[1])
# dataset_val.prepare()
dataset_val = drillerDat

# Load and display random samples
image_ids = np.random.choice(dataset_train.image_ids, 4)
print('choice image_ids = ', image_ids)
for image_id in image_ids:
    image = dataset_train.load_image(image_id)
    mask, class_ids = dataset_train.load_mask(image_id)
    visualize.display_top_masks(image,
                                mask,
                                class_ids,
                                dataset_train.class_names,
                                limit=2)

# Create model in training mode
model = modellib.MaskRCNN(mode="training", config=config, model_dir=MODEL_DIR)

# Which weights to start with?
init_with = "coco"  # imagenet, coco, or last

if init_with == "imagenet":
    model.load_weights(model.get_imagenet_weights(), by_name=True)
elif init_with == "coco":
    # Load weights trained on MS COCO, but skip layers that
    # are different due to the different number of classes
    # See README for instructions to download the COCO weights
def examin_data(model, image_path=None, option=None):
    # visualization function. 4 basic options provided:
    # activation visualization
    # pre and post mold mask visualization
    # augmentations visualization
    #
    # change as necessary

    assert image_path or option

    if image_path:

        print("Running on {}".format(args.image))

        image = skimage.io.imread(args.image)
        # run selected graphs and save outputs for each
        activations = model.run_graph(
            [image],
            [
                ("input_image",
                 tf.identity(
                     model.keras_model.get_layer("input_image").output)),
                ("res2c_out", model.keras_model.get_layer("res2c_out").output),
                ("res3c_out", model.keras_model.get_layer("res3c_out").output),
                ("res4w_out", model.keras_model.get_layer("res4w_out").output
                 ),  # for resnet100
                ("rpn_bbox", model.keras_model.get_layer("rpn_bbox").output),
                ("roi", model.keras_model.get_layer("ROI").output),
            ])
        _ = plt.imshow(
            modellib.unmold_image(activations["input_image"][0],
                                  SiliqueConfig()))
        display_images(np.transpose(activations["res3c_out"][0, :, :, :5],
                                    [2, 0, 1]),
                       cols=5,
                       save=True,
                       name="activations_aa_" + args.image.split(".")[0],
                       savedir="Mask_RCNN/output")
    elif option:
        #prepare dataset and augmentation config
        dataset = SiliqueDataset()
        dataset.load_silique("new_dataset/", "val", ["white"])
        dataset.prepare()
        image_ids = np.random.choice(dataset.image_ids, 10)
        augmentation = augs.Sometimes(
            0.7,
            augs.SomeOf((1, 3), [
                augs.Flipud(0.5),
                augs.Flipud(0.5),
                augs.GaussianBlur(sigma=(0.0, 5.0)),
                augs.Affine(scale={
                    "x": (0.8, 1.2),
                    "y": (0.8, 1.2)
                }),
                augs.Affine(rotate=(-90, 90))
            ],
                        random_order=True))

    if option == "premold_masks":
        # view images and masks before mold
        for image_id in image_ids:
            print("extracting {}".format(image_id))
            image = dataset.load_image(image_id)
            mask, class_ids = dataset.load_mask(image_id)
            display_top_masks(image,
                              mask,
                              class_ids,
                              dataset.class_names,
                              limit=1,
                              sve=True,
                              nme="white_masks_{}".format(image_id),
                              svedir="Mask_RCNN/output")
    elif option == "postmold_masks":
        print("Generating molded images...")
        for image_id in image_ids:
            print("extracting {}".format(image_id))
            #load image after it has been processed by the model
            image, image_meta, class_ids, bbox, mask = modellib.load_image_gt(
                dataset,
                SiliqueConfig(),
                image_id,
                use_mini_mask=False,
                augmentation=augmentation)
            display_top_masks(image,
                              mask,
                              class_ids,
                              dataset.class_names,
                              limit=1,
                              sve=True,
                              nme="white_masks_{}".format(image_id),
                              svedir="Mask_RCNN/output")
 def display_masks(self, image, mask, class_ids, class_names):
     # print("display_masks: {}, {}".format(class_ids, class_names))
     visualize.display_top_masks(image, mask, class_ids, class_names)
Example #20
0
dataset_val = LegoDataset()
dataset_val.load_lego("val")
dataset_val.prepare()

dataset_test = LegoDataset()
dataset_test.load_lego("test")
dataset_test.prepare()

# In[6]:

# Load and display random samples
image_ids = np.random.choice(dataset_train.image_ids, 12)
for image_id in []:
    path, image = dataset_train.load_image(image_id)
    mask, class_ids = dataset_train.load_mask(image_id)
    visualize.display_top_masks(image, mask, class_ids,
                                dataset_train.class_names, path)

# ## Ceate Model

# In[7]:

# Create model in training mode
model = modellib.MaskRCNN(mode="training", config=config, model_dir=MODEL_DIR)

# In[8]:

# Which weights to start with?
init_with = "coco"  # imagenet, coco, or last

if init_with == "imagenet":
    model.load_weights(model.get_imagenet_weights(), by_name=True)
Example #21
0
    def load_sample(self,
                    samples,
                    dataset,
                    scaled=False,
                    scaled_to=50,
                    show_fig=True):
        """load the requested number of images.
        count: number of images to generate.
        scaled: whether to resize image or not.
        scaled_to: percentage to resize the image.
        """

        # Add classes
        self.add_class("shapes", 1, "Houses")
        self.add_class("shapes", 2, "Buildings")
        self.add_class("shapes", 3, "Sheds/Garages")

        # pick samples randomly
        self.samples = random.sample(range(0, len(dataset)), samples)

        # MAIN Loop
        for image_id, sample in enumerate(self.samples):

            # resize images
            frame_id = dataset[sample]
            self.imagePath = os.path.join(RGB_DIR, frame_id)
            self.image, self.width, self.height = self.scale_image(
                plt.imread(self.imagePath), scaled=scaled, scaled_to=scaled_to)

            # record polygons class their bounding boxes and areas
            shapes = []
            boxes = []
            areas = []
            list_vertices = []

            # read polygon annotations
            data = pd.read_json(
                self.imagePath.replace('raw', 'annotations').replace(
                    'png', 'png-annotated.json'))

            for shape in range(len(data.labels)):
                print('found {} {}'.format(
                    len(data.labels[shape]['annotations']),
                    data.labels[shape]['name']))

                # iterate thorough each polygons
                for poly in range(len(data.labels[shape]['annotations'])):

                    # get vertices of polygons (house, building, garage)
                    vertices = np.array(
                        data.labels[shape]['annotations'][poly]
                        ['segmentation'], np.int32)
                    vertices = vertices.reshape((-1, 1, 2))

                    # draw polygons on scaled image
                    if scaled == True:
                        scaled_vertices = []
                        for v in range(len(vertices)):
                            scaled_vertices.append(
                                int(vertices[v][0][0] * scaled_to / 100))  #x
                            scaled_vertices.append(
                                int(vertices[v][0][1] * scaled_to / 100))  #y
                        vertices = np.array(scaled_vertices).reshape(
                            (-1, 1, 2))

                    # draw polygons on scaled image to create segmentation
                    image, color, bbox, area = self.draw_polygons(
                        self.image, vertices, shape, draw_bbox=False)

                    # same length as total polygons
                    boxes.append(bbox)
                    areas.append(area)
                    shapes.append((data.labels[shape]['name'], color, bbox))
                    list_vertices.append(vertices)

            # Pick random background color
            bg_color = np.array([random.randint(0, 255) for _ in range(3)])

            # collect all necessary data
            self.add_image("shapes",
                           image_id=image_id,
                           path=self.imagePath,
                           width=self.width,
                           height=self.height,
                           bg_color=bg_color,
                           shapes=shapes,
                           list_vertices=list_vertices,
                           image=self.image)

            # Apply non-max suppression wit 0.3 threshold to avoid shapes covering each other
            keep_ixs = utils.non_max_suppression(np.array(boxes),
                                                 np.arange(len(boxes)), 0.3)
            shapes = [s for i, s in enumerate(shapes) if i in keep_ixs]

            # create mask for each instances
            mask, class_ids = self.load_mask(image_id)

            if show_fig == True:
                fig = plt.figure(figsize=(12, 8),
                                 dpi=100,
                                 facecolor='w',
                                 edgecolor='k')
                plt.imshow((image * 255).astype(np.uint8))
                plt.show()
                visualize.display_top_masks(self.image, mask, class_ids,
                                            class_names)
Example #22
0
dataset = FashionDataset(image_df)
dataset.prepare()

for i in range(1):
    image_id = random.choice(dataset.image_ids)
    print(dataset.image_reference(image_id))

    image = dataset.load_image(image_id)
    mask, class_ids, attr_ids = dataset.load_mask(image_id)
    # print("class_ids", class_ids)
    # print("attr_ids", attr_ids)
    # print(type(attr_ids))
    visualize.display_top_masks(image,
                                mask,
                                class_ids,
                                attr_ids,
                                dataset.class_names,
                                dataset.attr_names,
                                limit=4)

# In[86]:

# This code partially supports k-fold training,
# you can specify the fold to train and the total number of folds here
FOLD = 0
N_FOLDS = 3

kf = KFold(n_splits=N_FOLDS, random_state=42, shuffle=True)
splits = kf.split(
    image_df)  # ideally, this should be multilabel stratification
Example #23
0
    def get_labels(self, labels):

        dims = labels.shape

        unlabeled_labels = np.zeros((dims[0], dims[1], 1))
        building_labels = np.zeros((dims[0], dims[1], 1))
        fence_labels = np.zeros((dims[0], dims[1], 1))
        other_labels = np.zeros((dims[0], dims[1], 1))
        pedestrian_labels = np.zeros((dims[0], dims[1], 1))
        pole_labels = np.zeros((dims[0], dims[1], 1))
        road_line_labels = np.zeros((dims[0], dims[1], 1))
        road_labels = np.zeros((dims[0], dims[1], 1))
        sidewalk_labels = np.zeros((dims[0], dims[1], 1))
        vegetation_labels = np.zeros((dims[0], dims[1], 1))
        car_labels = np.zeros((dims[0], dims[1], 1))
        wall_labels = np.zeros((dims[0], dims[1], 1))
        traffic_sign_labels = np.zeros((dims[0], dims[1], 1))

        unlabeled_index = np.all(labels == (0, 0, 0), axis=-1)
        building_index = np.all(labels == (70, 70, 70), axis=-1)
        fence_index = np.all(labels == (190, 153, 153), axis=-1)
        other_index = np.all(labels == (250, 170, 160), axis=-1)
        pedestrian_index = np.all(labels == (220, 20, 60), axis=-1)
        pole_index = np.all(labels == (153, 153, 153), axis=-1)
        road_line_index = np.all(labels == (157, 234, 50), axis=-1)
        road_index = np.all(labels == (128, 64, 128), axis=-1)
        sidewalk_index = np.all(labels == (244, 35, 232), axis=-1)
        vegetation_index = np.all(labels == (107, 142, 35), axis=-1)
        car_index = np.all(labels == (0, 0, 142), axis=-1)
        wall_index = np.all(labels == (102, 102, 156), axis=-1)
        traffic_sign_index = np.all(labels == (220, 220, 70), axis=-1)

        unlabeled_labels[unlabeled_index] = 1
        building_labels[building_index] = 10
        fence_labels[fence_index] = 10
        other_labels[other_index] = 10
        pedestrian_labels[pedestrian_index] = 10
        pole_labels[pole_index] = 10
        road_line_labels[road_line_index] = 10
        road_labels[road_index] = 10
        sidewalk_labels[sidewalk_index] = 10
        vegetation_labels[vegetation_index] = 1
        car_labels[car_index] = 10
        wall_labels[wall_index] = 10
        traffic_sign_labels[traffic_sign_index] = 10

        return np.dstack([unlabeled_labels, building_labels, fence_labels,
        return np.dstack([unlabeled_labels, building_labels, fence_labels,
                          other_labels, pedestrian_labels, pole_labels,
                          road_line_labels, road_labels, sidewalk_labels, vegetation_labels,
                          car_labels, wall_labels, traffic_sign_labels])

    def image_reference(self, image_id):
        """Return the carla data of the image."""
        info = self.image_info[image_id]
        if info["source"] == "carla":
            return info["id"]
        else:
            super(self.__class__).image_reference(self, image_id)

config = CarlaConfig()
config.STEPS_PER_EPOCH = NUMBER_OF_TRAIN_DATA//config.BATCH_SIZE
config.VALIDATION_STEPS = NUMBER_OF_VAL_DATA//config.BATCH_SIZE
config.display()


dataset = carlaDataset()
dataset.load_images(dir=RGB_TRAIN_DIR, type='train')


# mask, a = train.load_mask(50)
# print(a)
dataset.prepare()
print("Image Count: {}".format(len(dataset.image_ids)))
print("Class Count: {}".format(dataset.num_classes))
for i, info in enumerate(dataset.class_info):
    print("{:3}. {:50}".format(i, info['name']))

image_ids = np.random.choice(dataset.image_ids, 4)
for image_id in image_ids:
    image = dataset.load_image(image_id)
    mask, class_ids = dataset.load_mask(image_id)
    visualize.display_top_masks(image, mask, class_ids, dataset.class_names)




# Load random image and mask.
image_id = random.choice(dataset.image_ids)
image = dataset.load_image(image_id)
mask, class_ids = dataset.load_mask(image_id)
# Compute Bounding box
bbox = utils.extract_bboxes(mask)

# Display image and additional stats
print("image_id ", image_id)
log("image", image)
log("mask", mask)
log("class_ids", class_ids)
log("bbox", bbox)
# Display image and instances
visualize.display_instances(image, bbox, mask, class_ids, dataset.class_names)


# Load random image and mask.
image_id = np.random.choice(dataset.image_ids, 1)[0]
image = dataset.load_image(image_id)
mask, class_ids = dataset.load_mask(image_id)
original_shape = image.shape
# Resize
image, window, scale, padding, _ = utils.resize_image(
    image,
    min_dim=config.IMAGE_MIN_DIM,
    max_dim=config.IMAGE_MAX_DIM,
    mode=config.IMAGE_RESIZE_MODE)
mask = utils.resize_mask(mask, scale, padding)
# Compute Bounding box
bbox = utils.extract_bboxes(mask)

# Display image and additional stats
print("image_id: ", image_id)
print("Original shape: ", original_shape)
log("image", image)
log("mask", mask)
log("class_ids", class_ids)
log("bbox", bbox)
# Display image and instances
visualize.display_instances(image, bbox, mask, class_ids, dataset.class_names)



image_id = np.random.choice(dataset.image_ids, 1)[0]
image, image_meta, class_ids, bbox, mask = modellib.load_image_gt(
    dataset, config, image_id, use_mini_mask=False)

log("image", image)
log("image_meta", image_meta)
log("class_ids", class_ids)
log("bbox", bbox)
log("mask", mask)

display_images([image]+[mask[:,:,i] for i in range(min(mask.shape[-1], 7))])

visualize.display_instances(image, bbox, mask, class_ids, dataset.class_names)

# Generate Anchors
backbone_shapes = modellib.compute_backbone_shapes(config, config.IMAGE_SHAPE)
anchors = utils.generate_pyramid_anchors(config.RPN_ANCHOR_SCALES,
                                          config.RPN_ANCHOR_RATIOS,
                                          backbone_shapes,
                                          config.BACKBONE_STRIDES,
                                          config.RPN_ANCHOR_STRIDE)

# Print summary of anchors
num_levels = len(backbone_shapes)
anchors_per_cell = len(config.RPN_ANCHOR_RATIOS)
print("Count: ", anchors.shape[0])
print("Scales: ", config.RPN_ANCHOR_SCALES)
print("ratios: ", config.RPN_ANCHOR_RATIOS)
print("Anchors per Cell: ", anchors_per_cell)
print("Levels: ", num_levels)
anchors_per_level = []
for l in range(num_levels):
    num_cells = backbone_shapes[l][0] * backbone_shapes[l][1]
    anchors_per_level.append(anchors_per_cell * num_cells // config.RPN_ANCHOR_STRIDE**2)
    print("Anchors in Level {}: {}".format(l, anchors_per_level[l]))
## Visualize anchors of one cell at the center of the feature map of a specific level

# Load and draw random image
image_id = np.random.choice(dataset.image_ids, 1)[0]
image, image_meta, _, _, _ = modellib.load_image_gt(dataset, config, image_id)
fig, ax = plt.subplots(1, figsize=(10, 10))
ax.imshow(image)
levels = len(backbone_shapes)

for level in range(levels):
    colors = visualize.random_colors(levels)
    # Compute the index of the anchors at the center of the image
    level_start = sum(anchors_per_level[:level]) # sum of anchors of previous levels
    level_anchors = anchors[level_start:level_start+anchors_per_level[level]]
    print("Level {}. Anchors: {:6}  Feature map Shape: {}".format(level, level_anchors.shape[0],
                                                                  backbone_shapes[level]))
    center_cell = backbone_shapes[level] // 2
    center_cell_index = (center_cell[0] * backbone_shapes[level][1] + center_cell[1])
    level_center = center_cell_index * anchors_per_cell
    center_anchor = anchors_per_cell * (
        (center_cell[0] * backbone_shapes[level][1] / config.RPN_ANCHOR_STRIDE**2) \
        + center_cell[1] / config.RPN_ANCHOR_STRIDE)
    level_center = int(center_anchor)

    # Draw anchors. Brightness show the order in the array, dark to bright.
    for i, rect in enumerate(level_anchors[level_center:level_center+anchors_per_cell]):
        y1, x1, y2, x2 = rect
        p = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=2, facecolor='none',
                              edgecolor=(i+1)*np.array(colors[level]) / anchors_per_cell)
        ax.add_patch(p)

# Create data generator
random_rois = 4000
g = modellib.data_generator(
    dataset, config, shuffle=True, random_rois=random_rois,
    batch_size=4,
    detection_targets=True)
# Get Next Image
if random_rois:
    [normalized_images, image_meta, rpn_match, rpn_bbox, gt_class_ids, gt_boxes, gt_masks, rpn_rois, rois], \
    [mrcnn_class_ids, mrcnn_bbox, mrcnn_mask] = next(g)

    log("rois", rois)
    log("mrcnn_class_ids", mrcnn_class_ids)
    log("mrcnn_bbox", mrcnn_bbox)
    log("mrcnn_mask", mrcnn_mask)
else:
    [normalized_images, image_meta, rpn_match, rpn_bbox, gt_boxes, gt_masks], _ = next(g)

log("gt_class_ids", gt_class_ids)
log("gt_boxes", gt_boxes)
log("gt_masks", gt_masks)
log("rpn_match", rpn_match, )
log("rpn_bbox", rpn_bbox)
image_id = modellib.parse_image_meta(image_meta)["image_id"][0]
print("image_id: ", image_id, dataset.image_reference(image_id))

# Remove the last dim in mrcnn_class_ids. It's only added
# to satisfy Keras restriction on target shape.
mrcnn_class_ids = mrcnn_class_ids[:, :, 0]


b = 0

# Restore original image (reverse normalization)
sample_image = modellib.unmold_image(normalized_images[b], config)

# Compute anchor shifts.
indices = np.where(rpn_match[b] == 1)[0]
refined_anchors = utils.apply_box_deltas(anchors[indices], rpn_bbox[b, :len(indices)] * config.RPN_BBOX_STD_DEV)
log("anchors", anchors)
log("refined_anchors", refined_anchors)

# Get list of positive anchors
positive_anchor_ids = np.where(rpn_match[b] == 1)[0]
print("Positive anchors: {}".format(len(positive_anchor_ids)))
negative_anchor_ids = np.where(rpn_match[b] == -1)[0]
print("Negative anchors: {}".format(len(negative_anchor_ids)))
neutral_anchor_ids = np.where(rpn_match[b] == 0)[0]
print("Neutral anchors: {}".format(len(neutral_anchor_ids)))

# ROI breakdown by class
for c, n in zip(dataset.class_names, np.bincount(mrcnn_class_ids[b].flatten())):
    if n:
        print("{:23}: {}".format(c[:20], n))

# Show positive anchors
visualize.draw_boxes(sample_image, boxes=anchors[positive_anchor_ids],
                     refined_boxes=refined_anchors)



# Show negative anchors
visualize.draw_boxes(sample_image, boxes=anchors[negative_anchor_ids])


# Show neutral anchors. They don't contribute to training.
visualize.draw_boxes(sample_image, boxes=anchors[np.random.choice(neutral_anchor_ids, 100)])

if random_rois:
    # Class aware bboxes
    bbox_specific = mrcnn_bbox[b, np.arange(mrcnn_bbox.shape[1]), mrcnn_class_ids[b], :]

    # Refined ROIs
    refined_rois = utils.apply_box_deltas(rois[b].astype(np.float32), bbox_specific[:, :4] * config.BBOX_STD_DEV)

    # Class aware masks
    mask_specific = mrcnn_mask[b, np.arange(mrcnn_mask.shape[1]), :, :, mrcnn_class_ids[b]]

    visualize.draw_rois(sample_image, rois[b], refined_rois, mask_specific, mrcnn_class_ids[b], dataset.class_names)

    # Any repeated ROIs?
    rows = np.ascontiguousarray(rois[b]).view(np.dtype((np.void, rois.dtype.itemsize * rois.shape[-1])))
    _, idx = np.unique(rows, return_index=True)
    print("Unique ROIs: {} out of {}".format(len(idx), rois.shape[1]))
if random_rois:
    # Dispalay ROIs and corresponding masks and bounding boxes
    ids = random.sample(range(rois.shape[1]), 8)

    images = []
    titles = []
    for i in ids:
        image = visualize.draw_box(sample_image.copy(), rois[b,i,:4].astype(np.int32), [255, 0, 0])
        image = visualize.draw_box(image, refined_rois[i].astype(np.int64), [0, 255, 0])
        images.append(image)
        titles.append("ROI {}".format(i))
        images.append(mask_specific[i] * 255)
        titles.append(dataset.class_names[mrcnn_class_ids[b,i]][:20])

    display_images(images, titles, cols=4, cmap="Blues", interpolation="none")
# Check ratio of positive ROIs in a set of images.
if random_rois:
    limit = 10
    temp_g = modellib.data_generator(
        dataset, config, shuffle=True, random_rois=10000,
        batch_size=1, detection_targets=True)
    total = 0
    for i in range(limit):
        _, [ids, _, _] = next(temp_g)
        positive_rois = np.sum(ids[0] > 0)
        total += positive_rois
        print("{:5} {:5.2f}".format(positive_rois, positive_rois/ids.shape[1]))
    print("Average percent: {:.2f}".format(total/(limit*ids.shape[1])))
exit()
Example #24
0
image_df = pd.concat([image_df_1, image_df_2, image_df_3])

dataset = FloorDataset()
dataset.add_data(df=image_df)
dataset.prepare()

#SHOW SOME IMAGE

for i in range(3):
    image_id = random.choice(dataset.image_ids)
    image = dataset.load_image(image_id)
    mask, class_ids = dataset.load_mask(image_id)
    black_white_img = visualize.display_top_masks(image,
                                                  mask,
                                                  class_ids,
                                                  dataset.class_names,
                                                  limit=1)
    # cv2.imwrite('./black_white_img_4/color_img_{}.jpg'.format(i), black_white_img)
    # black_white_img = cv2.imread('./black_white_img_4/color_img_{}.jpg'.format(i), 0)
    # cv2.imwrite('./black_white_img_4/color_img_{}.jpg'.format(i), image)
    # cv2.imwrite('./black_white_img_4/img_{}.jpg'.format(i), ~black_white_img)

####-----------__TRAINING----------------------########
FOLD = 0
N_FOLDS = 5

kf = KFold(n_splits=N_FOLDS, random_state=42, shuffle=True)
splits = kf.split(
    image_df)  # ideally, this should be multilabel stratification
Example #25
0
    # Visualize results
    r = results[0]
    # Get all result
    all_mask = visualize.display_instances(image, r['rois'], r['masks'],
                                           r['class_ids'], class_names,
                                           r['scores'])

    # Get box
    box_mask = visualize.draw_rois(image, r['rois'], r['rois'], r['masks'],
                                   r['class_ids'], class_names)
    #    skimage.io.imsave("./save_result/box_"+num+".png",box_mask)

    # Get mask
    binery_mask = visualize.display_top_masks(image,
                                              r['masks'],
                                              r['class_ids'],
                                              class_names,
                                              limit=1)
    exact_roi = binery_mask * image[:, :, 0]
    bimage = binery_mask * 255
    skimage.io.imsave("./save_result/mask_" + num + ".png", bimage)

    # Find max rectangle from binery mask
    image_path = "./save_result/mask_" + num + ".png"
    coors = find_max_rectangle(image_path)
    print(coors)

    # Extract ROI from original images
    roi_image = exact_roi[coors[1]:coors[3], coors[0]:coors[2]]
    skimage.io.imshow(roi_image, cmap='gray')
#    skimage.io.imsave("./save_result/roi_"+num+".png",roi_image)
# Must call before using the dataset
dataset.prepare()

print("Image Count: {}".format(len(dataset.image_ids)))
print("Class Count: {}".format(dataset.num_classes))
# 遍历coco数据集类别:总共80类
for i, info in enumerate(dataset.class_info):
    print("{:3}. {:50}".format(i, info['name']))

# Load and display random samples
image_ids = np.random.choice(dataset.image_ids, 4)
for image_id in image_ids:
    image = dataset.load_image(image_id)
    mask, class_ids = dataset.load_mask(image_id)
    visualize.display_top_masks(image, mask, class_ids, dataset.class_names)

# Load random image and mask.
image_id = random.choice(dataset.image_ids)
image = dataset.load_image(image_id)
mask, class_ids = dataset.load_mask(image_id)
# Compute Bounding box
bbox = utils.extract_bboxes(mask)

# Display image and additional stats
print("image_id ", image_id, dataset.image_reference(image_id))
log("image", image)
log("mask", mask)
log("class_ids", class_ids)
log("bbox", bbox)
# Display image and instances
def inspect_data(dataset, config):
    print("Image Count: {}".format(len(dataset.image_ids)))
    print("Class Count: {}".format(dataset.num_classes))
    for i, info in enumerate(dataset.class_info):
        print("{:3}. {:50}".format(i, info['name']))

    # ## Display Samples
    #
    # Load and display images and masks.

    # In[4]:

    # Load and display random samples
    image_ids = np.random.choice(dataset.image_ids, 4)
    for image_id in image_ids:
        image = dataset.load_image(image_id)
        mask, class_ids = dataset.load_mask(image_id)
        visualize.display_top_masks(image, mask, class_ids,
                                    dataset.class_names)

    # ## Bounding Boxes
    #
    # Rather than using bounding box coordinates provided by the source datasets, we compute the bounding boxes from masks instead. This allows us to handle bounding boxes consistently regardless of the source dataset, and it also makes it easier to resize, rotate, or crop images because we simply generate the bounding boxes from the updates masks rather than computing bounding box transformation for each type of image transformation.

    # In[5]:

    # Load random image and mask.
    image_id = random.choice(dataset.image_ids)
    image = dataset.load_image(image_id)
    mask, class_ids = dataset.load_mask(image_id)
    # Compute Bounding box
    bbox = utils.extract_bboxes(mask)

    # Display image and additional stats
    print("image_id ", image_id, dataset.image_reference(image_id))
    log("image", image)
    log("mask", mask)
    log("class_ids", class_ids)
    log("bbox", bbox)
    # Display image and instances
    visualize.display_instances(image, bbox, mask, class_ids,
                                dataset.class_names)

    # ## Resize Images
    #
    # To support multiple images per batch, images are resized to one size (1024x1024). Aspect ratio is preserved, though. If an image is not square, then zero padding is added at the top/bottom or right/left.

    # In[6]:

    # Load random image and mask.
    image_id = np.random.choice(dataset.image_ids, 1)[0]
    image = dataset.load_image(image_id)
    mask, class_ids = dataset.load_mask(image_id)
    original_shape = image.shape
    # Resize
    image, window, scale, padding, _ = utils.resize_image(
        image,
        min_dim=config.IMAGE_MIN_DIM,
        max_dim=config.IMAGE_MAX_DIM,
        mode=config.IMAGE_RESIZE_MODE)
    mask = utils.resize_mask(mask, scale, padding)
    # Compute Bounding box
    bbox = utils.extract_bboxes(mask)

    # Display image and additional stats
    print("image_id: ", image_id, dataset.image_reference(image_id))
    print("Original shape: ", original_shape)
    log("image", image)
    log("mask", mask)
    log("class_ids", class_ids)
    log("bbox", bbox)
    # Display image and instances
    visualize.display_instances(image, bbox, mask, class_ids,
                                dataset.class_names)

    # ## Mini Masks
    #
    # Instance binary masks can get large when training with high resolution images. For example, if training with 1024x1024 image then the mask of a single instance requires 1MB of memory (Numpy uses bytes for boolean values). If an image has 100 instances then that's 100MB for the masks alone.
    #
    # To improve training speed, we optimize masks by:
    # * We store mask pixels that are inside the object bounding box, rather than a mask of the full image. Most objects are small compared to the image size, so we save space by not storing a lot of zeros around the object.
    # * We resize the mask to a smaller size (e.g. 56x56). For objects that are larger than the selected size we lose a bit of accuracy. But most object annotations are not very accuracy to begin with, so this loss is negligable for most practical purposes. Thie size of the mini_mask can be set in the config class.
    #
    # To visualize the effect of mask resizing, and to verify the code correctness, we visualize some examples.

    # In[7]:

    image_id = np.random.choice(dataset.image_ids, 1)[0]
    image, image_meta, class_ids, bbox, mask = modellib.load_image_gt(
        dataset, config, image_id, use_mini_mask=False)

    log("image", image)
    log("image_meta", image_meta)
    log("class_ids", class_ids)
    log("bbox", bbox)
    log("mask", mask)

    display_images([image] +
                   [mask[:, :, i] for i in range(min(mask.shape[-1], 7))])

    # In[8]:

    visualize.display_instances(image, bbox, mask, class_ids,
                                dataset.class_names)

    # In[9]:

    # Add augmentation and mask resizing.
    image, image_meta, class_ids, bbox, mask = modellib.load_image_gt(
        dataset, config, image_id, augment=True, use_mini_mask=True)
    log("mask", mask)
    display_images([image] +
                   [mask[:, :, i] for i in range(min(mask.shape[-1], 7))])

    # In[10]:

    mask = utils.expand_mask(bbox, mask, image.shape)
    visualize.display_instances(image, bbox, mask, class_ids,
                                dataset.class_names)

    # ## Anchors
    #
    # The order of anchors is important. Use the same order in training and prediction phases. And it must match the order of the convolution execution.
    #
    # For an FPN network, the anchors must be ordered in a way that makes it easy to match anchors to the output of the convolution layers that predict anchor scores and shifts.
    # * Sort by pyramid level first. All anchors of the first level, then all of the second and so on. This makes it easier to separate anchors by level.
    # * Within each level, sort anchors by feature map processing sequence. Typically, a convolution layer processes a feature map starting from top-left and moving right row by row.
    # * For each feature map cell, pick any sorting order for the anchors of different ratios. Here we match the order of ratios passed to the function.
    #
    # **Anchor Stride:**
    # In the FPN architecture, feature maps at the first few layers are high resolution. For example, if the input image is 1024x1024 then the feature meap of the first layer is 256x256, which generates about 200K anchors (256*256*3). These anchors are 32x32 pixels and their stride relative to image pixels is 4 pixels, so there is a lot of overlap. We can reduce the load significantly if we generate anchors for every other cell in the feature map. A stride of 2 will cut the number of anchors by 4, for example.
    #
    # In this implementation we use an anchor stride of 2, which is different from the paper.

    # In[11]:

    # Generate Anchors
    backbone_shapes = modellib.compute_backbone_shapes(config,
                                                       config.IMAGE_SHAPE)
    anchors = utils.generate_pyramid_anchors(config.RPN_ANCHOR_SCALES,
                                             config.RPN_ANCHOR_RATIOS,
                                             backbone_shapes,
                                             config.BACKBONE_STRIDES,
                                             config.RPN_ANCHOR_STRIDE)

    # Print summary of anchors
    num_levels = len(backbone_shapes)
    anchors_per_cell = len(config.RPN_ANCHOR_RATIOS)
    print("Count: ", anchors.shape[0])
    print("Scales: ", config.RPN_ANCHOR_SCALES)
    print("ratios: ", config.RPN_ANCHOR_RATIOS)
    print("Anchors per Cell: ", anchors_per_cell)
    print("Levels: ", num_levels)
    anchors_per_level = []
    for l in range(num_levels):
        num_cells = backbone_shapes[l][0] * backbone_shapes[l][1]
        anchors_per_level.append(anchors_per_cell * num_cells //
                                 config.RPN_ANCHOR_STRIDE**2)
        print("Anchors in Level {}: {}".format(l, anchors_per_level[l]))

    # Visualize anchors of one cell at the center of the feature map of a specific level.

    # In[12]:

    ## Visualize anchors of one cell at the center of the feature map of a specific level

    # Load and draw random image
    image_id = np.random.choice(dataset.image_ids, 1)[0]
    image, image_meta, _, _, _ = modellib.load_image_gt(
        dataset, config, image_id)
    fig, ax = plt.subplots(1, figsize=(10, 10))
    ax.imshow(image)
    levels = len(backbone_shapes)

    for level in range(levels):
        colors = visualize.random_colors(levels)
        # Compute the index of the anchors at the center of the image
        level_start = sum(
            anchors_per_level[:level])  # sum of anchors of previous levels
        level_anchors = anchors[level_start:level_start +
                                anchors_per_level[level]]
        print("Level {}. Anchors: {:6}  Feature map Shape: {}".format(
            level, level_anchors.shape[0], backbone_shapes[level]))
        center_cell = backbone_shapes[level] // 2
        center_cell_index = (center_cell[0] * backbone_shapes[level][1] +
                             center_cell[1])
        level_center = center_cell_index * anchors_per_cell
        center_anchor = anchors_per_cell * (
            (center_cell[0] * backbone_shapes[level][1] / config.RPN_ANCHOR_STRIDE**2) \
            + center_cell[1] / config.RPN_ANCHOR_STRIDE)
        level_center = int(center_anchor)

        # Draw anchors. Brightness show the order in the array, dark to bright.
        for i, rect in enumerate(level_anchors[level_center:level_center +
                                               anchors_per_cell]):
            y1, x1, y2, x2 = rect
            p = patches.Rectangle(
                (x1, y1),
                x2 - x1,
                y2 - y1,
                linewidth=2,
                facecolor='none',
                edgecolor=(i + 1) * np.array(colors[level]) / anchors_per_cell)
            ax.add_patch(p)

    # ## Data Generator
    #

    # In[13]:

    # Create data generator
    random_rois = 2000
    g = modellib.data_generator(dataset,
                                config,
                                shuffle=True,
                                random_rois=random_rois,
                                batch_size=4,
                                detection_targets=True)

    # In[14]:

    # Uncomment to run the generator through a lot of images
    # to catch rare errors
    # for i in range(1000):
    #     print(i)
    #     _, _ = next(g)

    # In[15]:

    # Get Next Image
    if random_rois:
        [
            normalized_images, image_meta, rpn_match, rpn_bbox, gt_class_ids,
            gt_boxes, gt_masks, rpn_rois, rois
        ], [mrcnn_class_ids, mrcnn_bbox, mrcnn_mask] = next(g)

        log("rois", rois)
        log("mrcnn_class_ids", mrcnn_class_ids)
        log("mrcnn_bbox", mrcnn_bbox)
        log("mrcnn_mask", mrcnn_mask)
    else:
        [
            normalized_images, image_meta, rpn_match, rpn_bbox, gt_boxes,
            gt_masks
        ], _ = next(g)

    log("gt_class_ids", gt_class_ids)
    log("gt_boxes", gt_boxes)
    log("gt_masks", gt_masks)
    log(
        "rpn_match",
        rpn_match,
    )
    log("rpn_bbox", rpn_bbox)
    image_id = modellib.parse_image_meta(image_meta)["image_id"][0]
    print("image_id: ", image_id, dataset.image_reference(image_id))

    # Remove the last dim in mrcnn_class_ids. It's only added
    # to satisfy Keras restriction on target shape.
    mrcnn_class_ids = mrcnn_class_ids[:, :, 0]

    # In[16]:

    b = 0

    # Restore original image (reverse normalization)
    sample_image = modellib.unmold_image(normalized_images[b], config)

    # Compute anchor shifts.
    indices = np.where(rpn_match[b] == 1)[0]
    refined_anchors = utils.apply_box_deltas(
        anchors[indices], rpn_bbox[b, :len(indices)] * config.RPN_BBOX_STD_DEV)
    log("anchors", anchors)
    log("refined_anchors", refined_anchors)

    # Get list of positive anchors
    positive_anchor_ids = np.where(rpn_match[b] == 1)[0]
    print("Positive anchors: {}".format(len(positive_anchor_ids)))
    negative_anchor_ids = np.where(rpn_match[b] == -1)[0]
    print("Negative anchors: {}".format(len(negative_anchor_ids)))
    neutral_anchor_ids = np.where(rpn_match[b] == 0)[0]
    print("Neutral anchors: {}".format(len(neutral_anchor_ids)))

    # ROI breakdown by class
    for c, n in zip(dataset.class_names,
                    np.bincount(mrcnn_class_ids[b].flatten())):
        if n:
            print("{:23}: {}".format(c[:20], n))

    # Show positive anchors
    fig, ax = plt.subplots(1, figsize=(16, 16))
    visualize.draw_boxes(sample_image,
                         boxes=anchors[positive_anchor_ids],
                         refined_boxes=refined_anchors,
                         ax=ax)

    # In[17]:

    # Show negative anchors
    visualize.draw_boxes(sample_image, boxes=anchors[negative_anchor_ids])

    # In[18]:

    # Show neutral anchors. They don't contribute to training.
    visualize.draw_boxes(sample_image,
                         boxes=anchors[np.random.choice(
                             neutral_anchor_ids, 100)])

    # ## ROIs

    # In[19]:

    if random_rois:
        # Class aware bboxes
        bbox_specific = mrcnn_bbox[b,
                                   np.arange(mrcnn_bbox.shape[1]),
                                   mrcnn_class_ids[b], :]

        # Refined ROIs
        refined_rois = utils.apply_box_deltas(
            rois[b].astype(np.float32),
            bbox_specific[:, :4] * config.BBOX_STD_DEV)

        # Class aware masks
        mask_specific = mrcnn_mask[b,
                                   np.arange(mrcnn_mask.shape[1]), :, :,
                                   mrcnn_class_ids[b]]

        visualize.draw_rois(sample_image, rois[b], refined_rois, mask_specific,
                            mrcnn_class_ids[b], dataset.class_names)

        # Any repeated ROIs?
        rows = np.ascontiguousarray(rois[b]).view(
            np.dtype((np.void, rois.dtype.itemsize * rois.shape[-1])))
        _, idx = np.unique(rows, return_index=True)
        print("Unique ROIs: {} out of {}".format(len(idx), rois.shape[1]))

    # In[20]:

    if random_rois:
        # Dispalay ROIs and corresponding masks and bounding boxes
        ids = random.sample(range(rois.shape[1]), 8)

        images = []
        titles = []
        for i in ids:
            image = visualize.draw_box(sample_image.copy(),
                                       rois[b, i, :4].astype(np.int32),
                                       [255, 0, 0])
            image = visualize.draw_box(image, refined_rois[i].astype(np.int64),
                                       [0, 255, 0])
            images.append(image)
            titles.append("ROI {}".format(i))
            images.append(mask_specific[i] * 255)
            titles.append(dataset.class_names[mrcnn_class_ids[b, i]][:20])

        display_images(images,
                       titles,
                       cols=4,
                       cmap="Blues",
                       interpolation="none")

    # In[21]:

    # Check ratio of positive ROIs in a set of images.
    if random_rois:
        limit = 10
        temp_g = modellib.data_generator(dataset,
                                         config,
                                         shuffle=True,
                                         random_rois=10000,
                                         batch_size=1,
                                         detection_targets=True)
        total = 0
        for i in range(limit):
            _, [ids, _, _] = next(temp_g)
            positive_rois = np.sum(ids[0] > 0)
            total += positive_rois
            print("{:5} {:5.2f}".format(positive_rois,
                                        positive_rois / ids.shape[1]))
        print("Average percent: {:.2f}".format(total / (limit * ids.shape[1])))