def visualize_instances(image, boxes, masks, class_ids, class_names, scores=None, ax=None, file_name=None, colors=None, making_video=False, making_image=False, open_cv=False): # Number of instances N = boxes.shape[0] if not N: print("\n*** No instances to display *** \n") else: assert boxes.shape[0] == masks.shape[-1] == class_ids.shape[0] if not making_video: # Generate random colors colors = visualize.random_colors(N) fig, ax = get_ax() # Show area outside image boundaries. height, width = image.shape[:2] ax.set_ylim(height + 10, -10) ax.set_xlim(-10, width + 10) ax.axis('off') masked_image = image.astype(np.uint32).copy() for i in range(N): if not making_video: color = colors[i] else: # all objects of a class get same color class_id = class_ids[i] color = colors[class_id - 1] # Bounding box if not np.any(boxes[i]): # Skip this instance. Has no bbox. Likely lost in image cropping. continue y1, x1, y2, x2 = boxes[i] # show bbox p = visualize.patches.Rectangle((x1, y1), x2 - x1, y2 - y1, linewidth=2, alpha=0.7, linestyle="dashed", edgecolor=color, facecolor='none') ax.add_patch(p) # Label class_id = class_ids[i] score = scores[i] if scores is not None else None try: label = class_names[class_id] except IndexError: label = 'label_error' x = random.randint(x1, (x1 + x2) // 2) caption = "{} {:.3f}".format(label, score) if score else label ax.text(x1, y1 + 8, caption, color='w', size=11, backgroundcolor="none") # Mask mask = masks[:, :, i] masked_image = visualize.apply_mask(masked_image, mask, color) # Mask Polygon # Pad to ensure proper polygons for masks that touch image edges. padded_mask = np.zeros((mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8) padded_mask[1:-1, 1:-1] = mask contours = visualize.find_contours(padded_mask, 0.5) for verts in contours: # Subtract the padding and flip (y, x) to (x, y) verts = np.fliplr(verts) - 1 p = visualize.Polygon(verts, facecolor="none", edgecolor=color) ax.add_patch(p) ax.imshow(masked_image.astype(np.uint8)) # To transform the drawn figure into ndarray X fig.canvas.draw() string = fig.canvas.tostring_rgb() masked = masked_image.astype(np.uint8) X = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') X = X.reshape(fig.canvas.get_width_height()[::-1] + (3, )) # open cv's RGB style: BGR # if open_cv: X = X[..., ::-1] if making_video: plt.close() # return masked_image.astype(np.uint8) # cv2.imshow('frame', X) # cv2.waitKey(1) return X elif making_image: # plt.savefig(file_name) cv2.imwrite(file_name, X)
def inspect_data(dataset, config): print("Image Count: {}".format(len(dataset.image_ids))) print("Class Count: {}".format(dataset.num_classes)) for i, info in enumerate(dataset.class_info): print("{:3}. {:50}".format(i, info['name'])) # ## Display Samples # # Load and display images and masks. # In[4]: # Load and display random samples image_ids = np.random.choice(dataset.image_ids, 4) for image_id in image_ids: image = dataset.load_image(image_id) mask, class_ids = dataset.load_mask(image_id) visualize.display_top_masks(image, mask, class_ids, dataset.class_names) # ## Bounding Boxes # # Rather than using bounding box coordinates provided by the source datasets, we compute the bounding boxes from masks instead. This allows us to handle bounding boxes consistently regardless of the source dataset, and it also makes it easier to resize, rotate, or crop images because we simply generate the bounding boxes from the updates masks rather than computing bounding box transformation for each type of image transformation. # In[5]: # Load random image and mask. image_id = random.choice(dataset.image_ids) image = dataset.load_image(image_id) mask, class_ids = dataset.load_mask(image_id) # Compute Bounding box bbox = utils.extract_bboxes(mask) # Display image and additional stats print("image_id ", image_id, dataset.image_reference(image_id)) log("image", image) log("mask", mask) log("class_ids", class_ids) log("bbox", bbox) # Display image and instances visualize.display_instances(image, bbox, mask, class_ids, dataset.class_names) # ## Resize Images # # To support multiple images per batch, images are resized to one size (1024x1024). Aspect ratio is preserved, though. If an image is not square, then zero padding is added at the top/bottom or right/left. # In[6]: # Load random image and mask. image_id = np.random.choice(dataset.image_ids, 1)[0] image = dataset.load_image(image_id) mask, class_ids = dataset.load_mask(image_id) original_shape = image.shape # Resize image, window, scale, padding, _ = utils.resize_image( image, min_dim=config.IMAGE_MIN_DIM, max_dim=config.IMAGE_MAX_DIM, mode=config.IMAGE_RESIZE_MODE) mask = utils.resize_mask(mask, scale, padding) # Compute Bounding box bbox = utils.extract_bboxes(mask) # Display image and additional stats print("image_id: ", image_id, dataset.image_reference(image_id)) print("Original shape: ", original_shape) log("image", image) log("mask", mask) log("class_ids", class_ids) log("bbox", bbox) # Display image and instances visualize.display_instances(image, bbox, mask, class_ids, dataset.class_names) # ## Mini Masks # # Instance binary masks can get large when training with high resolution images. For example, if training with 1024x1024 image then the mask of a single instance requires 1MB of memory (Numpy uses bytes for boolean values). If an image has 100 instances then that's 100MB for the masks alone. # # To improve training speed, we optimize masks by: # * We store mask pixels that are inside the object bounding box, rather than a mask of the full image. Most objects are small compared to the image size, so we save space by not storing a lot of zeros around the object. # * We resize the mask to a smaller size (e.g. 56x56). For objects that are larger than the selected size we lose a bit of accuracy. But most object annotations are not very accuracy to begin with, so this loss is negligable for most practical purposes. Thie size of the mini_mask can be set in the config class. # # To visualize the effect of mask resizing, and to verify the code correctness, we visualize some examples. # In[7]: image_id = np.random.choice(dataset.image_ids, 1)[0] image, image_meta, class_ids, bbox, mask = modellib.load_image_gt( dataset, config, image_id, use_mini_mask=False) log("image", image) log("image_meta", image_meta) log("class_ids", class_ids) log("bbox", bbox) log("mask", mask) display_images([image] + [mask[:, :, i] for i in range(min(mask.shape[-1], 7))]) # In[8]: visualize.display_instances(image, bbox, mask, class_ids, dataset.class_names) # In[9]: # Add augmentation and mask resizing. image, image_meta, class_ids, bbox, mask = modellib.load_image_gt( dataset, config, image_id, augment=True, use_mini_mask=True) log("mask", mask) display_images([image] + [mask[:, :, i] for i in range(min(mask.shape[-1], 7))]) # In[10]: mask = utils.expand_mask(bbox, mask, image.shape) visualize.display_instances(image, bbox, mask, class_ids, dataset.class_names) # ## Anchors # # The order of anchors is important. Use the same order in training and prediction phases. And it must match the order of the convolution execution. # # For an FPN network, the anchors must be ordered in a way that makes it easy to match anchors to the output of the convolution layers that predict anchor scores and shifts. # * Sort by pyramid level first. All anchors of the first level, then all of the second and so on. This makes it easier to separate anchors by level. # * Within each level, sort anchors by feature map processing sequence. Typically, a convolution layer processes a feature map starting from top-left and moving right row by row. # * For each feature map cell, pick any sorting order for the anchors of different ratios. Here we match the order of ratios passed to the function. # # **Anchor Stride:** # In the FPN architecture, feature maps at the first few layers are high resolution. For example, if the input image is 1024x1024 then the feature meap of the first layer is 256x256, which generates about 200K anchors (256*256*3). These anchors are 32x32 pixels and their stride relative to image pixels is 4 pixels, so there is a lot of overlap. We can reduce the load significantly if we generate anchors for every other cell in the feature map. A stride of 2 will cut the number of anchors by 4, for example. # # In this implementation we use an anchor stride of 2, which is different from the paper. # In[11]: # Generate Anchors backbone_shapes = modellib.compute_backbone_shapes(config, config.IMAGE_SHAPE) anchors = utils.generate_pyramid_anchors(config.RPN_ANCHOR_SCALES, config.RPN_ANCHOR_RATIOS, backbone_shapes, config.BACKBONE_STRIDES, config.RPN_ANCHOR_STRIDE) # Print summary of anchors num_levels = len(backbone_shapes) anchors_per_cell = len(config.RPN_ANCHOR_RATIOS) print("Count: ", anchors.shape[0]) print("Scales: ", config.RPN_ANCHOR_SCALES) print("ratios: ", config.RPN_ANCHOR_RATIOS) print("Anchors per Cell: ", anchors_per_cell) print("Levels: ", num_levels) anchors_per_level = [] for l in range(num_levels): num_cells = backbone_shapes[l][0] * backbone_shapes[l][1] anchors_per_level.append(anchors_per_cell * num_cells // config.RPN_ANCHOR_STRIDE**2) print("Anchors in Level {}: {}".format(l, anchors_per_level[l])) # Visualize anchors of one cell at the center of the feature map of a specific level. # In[12]: ## Visualize anchors of one cell at the center of the feature map of a specific level # Load and draw random image image_id = np.random.choice(dataset.image_ids, 1)[0] image, image_meta, _, _, _ = modellib.load_image_gt( dataset, config, image_id) fig, ax = plt.subplots(1, figsize=(10, 10)) ax.imshow(image) levels = len(backbone_shapes) for level in range(levels): colors = visualize.random_colors(levels) # Compute the index of the anchors at the center of the image level_start = sum( anchors_per_level[:level]) # sum of anchors of previous levels level_anchors = anchors[level_start:level_start + anchors_per_level[level]] print("Level {}. Anchors: {:6} Feature map Shape: {}".format( level, level_anchors.shape[0], backbone_shapes[level])) center_cell = backbone_shapes[level] // 2 center_cell_index = (center_cell[0] * backbone_shapes[level][1] + center_cell[1]) level_center = center_cell_index * anchors_per_cell center_anchor = anchors_per_cell * ( (center_cell[0] * backbone_shapes[level][1] / config.RPN_ANCHOR_STRIDE**2) \ + center_cell[1] / config.RPN_ANCHOR_STRIDE) level_center = int(center_anchor) # Draw anchors. Brightness show the order in the array, dark to bright. for i, rect in enumerate(level_anchors[level_center:level_center + anchors_per_cell]): y1, x1, y2, x2 = rect p = patches.Rectangle( (x1, y1), x2 - x1, y2 - y1, linewidth=2, facecolor='none', edgecolor=(i + 1) * np.array(colors[level]) / anchors_per_cell) ax.add_patch(p) # ## Data Generator # # In[13]: # Create data generator random_rois = 2000 g = modellib.data_generator(dataset, config, shuffle=True, random_rois=random_rois, batch_size=4, detection_targets=True) # In[14]: # Uncomment to run the generator through a lot of images # to catch rare errors # for i in range(1000): # print(i) # _, _ = next(g) # In[15]: # Get Next Image if random_rois: [ normalized_images, image_meta, rpn_match, rpn_bbox, gt_class_ids, gt_boxes, gt_masks, rpn_rois, rois ], [mrcnn_class_ids, mrcnn_bbox, mrcnn_mask] = next(g) log("rois", rois) log("mrcnn_class_ids", mrcnn_class_ids) log("mrcnn_bbox", mrcnn_bbox) log("mrcnn_mask", mrcnn_mask) else: [ normalized_images, image_meta, rpn_match, rpn_bbox, gt_boxes, gt_masks ], _ = next(g) log("gt_class_ids", gt_class_ids) log("gt_boxes", gt_boxes) log("gt_masks", gt_masks) log( "rpn_match", rpn_match, ) log("rpn_bbox", rpn_bbox) image_id = modellib.parse_image_meta(image_meta)["image_id"][0] print("image_id: ", image_id, dataset.image_reference(image_id)) # Remove the last dim in mrcnn_class_ids. It's only added # to satisfy Keras restriction on target shape. mrcnn_class_ids = mrcnn_class_ids[:, :, 0] # In[16]: b = 0 # Restore original image (reverse normalization) sample_image = modellib.unmold_image(normalized_images[b], config) # Compute anchor shifts. indices = np.where(rpn_match[b] == 1)[0] refined_anchors = utils.apply_box_deltas( anchors[indices], rpn_bbox[b, :len(indices)] * config.RPN_BBOX_STD_DEV) log("anchors", anchors) log("refined_anchors", refined_anchors) # Get list of positive anchors positive_anchor_ids = np.where(rpn_match[b] == 1)[0] print("Positive anchors: {}".format(len(positive_anchor_ids))) negative_anchor_ids = np.where(rpn_match[b] == -1)[0] print("Negative anchors: {}".format(len(negative_anchor_ids))) neutral_anchor_ids = np.where(rpn_match[b] == 0)[0] print("Neutral anchors: {}".format(len(neutral_anchor_ids))) # ROI breakdown by class for c, n in zip(dataset.class_names, np.bincount(mrcnn_class_ids[b].flatten())): if n: print("{:23}: {}".format(c[:20], n)) # Show positive anchors fig, ax = plt.subplots(1, figsize=(16, 16)) visualize.draw_boxes(sample_image, boxes=anchors[positive_anchor_ids], refined_boxes=refined_anchors, ax=ax) # In[17]: # Show negative anchors visualize.draw_boxes(sample_image, boxes=anchors[negative_anchor_ids]) # In[18]: # Show neutral anchors. They don't contribute to training. visualize.draw_boxes(sample_image, boxes=anchors[np.random.choice( neutral_anchor_ids, 100)]) # ## ROIs # In[19]: if random_rois: # Class aware bboxes bbox_specific = mrcnn_bbox[b, np.arange(mrcnn_bbox.shape[1]), mrcnn_class_ids[b], :] # Refined ROIs refined_rois = utils.apply_box_deltas( rois[b].astype(np.float32), bbox_specific[:, :4] * config.BBOX_STD_DEV) # Class aware masks mask_specific = mrcnn_mask[b, np.arange(mrcnn_mask.shape[1]), :, :, mrcnn_class_ids[b]] visualize.draw_rois(sample_image, rois[b], refined_rois, mask_specific, mrcnn_class_ids[b], dataset.class_names) # Any repeated ROIs? rows = np.ascontiguousarray(rois[b]).view( np.dtype((np.void, rois.dtype.itemsize * rois.shape[-1]))) _, idx = np.unique(rows, return_index=True) print("Unique ROIs: {} out of {}".format(len(idx), rois.shape[1])) # In[20]: if random_rois: # Dispalay ROIs and corresponding masks and bounding boxes ids = random.sample(range(rois.shape[1]), 8) images = [] titles = [] for i in ids: image = visualize.draw_box(sample_image.copy(), rois[b, i, :4].astype(np.int32), [255, 0, 0]) image = visualize.draw_box(image, refined_rois[i].astype(np.int64), [0, 255, 0]) images.append(image) titles.append("ROI {}".format(i)) images.append(mask_specific[i] * 255) titles.append(dataset.class_names[mrcnn_class_ids[b, i]][:20]) display_images(images, titles, cols=4, cmap="Blues", interpolation="none") # In[21]: # Check ratio of positive ROIs in a set of images. if random_rois: limit = 10 temp_g = modellib.data_generator(dataset, config, shuffle=True, random_rois=10000, batch_size=1, detection_targets=True) total = 0 for i in range(limit): _, [ids, _, _] = next(temp_g) positive_rois = np.sum(ids[0] > 0) total += positive_rois print("{:5} {:5.2f}".format(positive_rois, positive_rois / ids.shape[1])) print("Average percent: {:.2f}".format(total / (limit * ids.shape[1])))
def detect_and_color_splash(model, image_path=None, video_path=None, out_dir=''): assert image_path or video_path class_names = ['BG', 'adidas', 'apple'] # Image or video? if image_path: # Run model detection and generate the color splash effect print("Running on {}".format(args.image)) # Read image image = skimage.io.imread(args.image) # Detect objects r = model.detect([image], verbose=1)[0] # Color splash # splash = color_splash(image, r['masks']) visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], class_names, r['scores'], making_image=True) file_name = 'splash.png' # Save output # file_name = "splash_{:%Y%m%dT%H%M%S}.png".format(datetime.datetime.now()) # save_file_name = os.path.join(out_dir, file_name) # skimage.io.imsave(save_file_name, splash) elif video_path: import cv2 # Video capture vcapture = cv2.VideoCapture(video_path) # width = int(vcapture.get(cv2.CAP_PROP_FRAME_WIDTH)) # height = int(vcapture.get(cv2.CAP_PROP_FRAME_HEIGHT)) width = 1600 height = 1600 fps = vcapture.get(cv2.CAP_PROP_FPS) # Define codec and create video writer file_name = "splash_{:%Y%m%dT%H%M%S}.wmv".format( datetime.datetime.now()) vwriter = cv2.VideoWriter(file_name, cv2.VideoWriter_fourcc(*'MJPG'), fps, (width, height)) count = 0 success = True #For video, we wish classes keep the same mask in frames, generate colors for masks colors = visualize.random_colors(len(class_names)) while success: print("frame: ", count) # Read next image plt.clf() plt.close() success, image = vcapture.read() if success: # OpenCV returns images as BGR, convert to RGB image = image[..., ::-1] # Detect objects r = model.detect([image], verbose=0)[0] # Color splash # splash = color_splash(image, r['masks']) splash = visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], class_names, r['scores'], colors=colors, making_video=True) # Add image to video writer vwriter.write(splash) count += 1 vwriter.release() print("Saved to ", file_name)
def detect_and_color_splash(model: modellib.MaskRCNN, image_path: str = None, video_path: str = None, out_dir: str = None) -> None: """Detect objects in image/video and highlight them Args: model: trained model image_path: path of image to be detected video_path: path of video to be detected out_dir: output directory """ assert image_path or video_path # Get original file name if image_path: fname = os.path.basename(image_path) fname = os.path.splitext(fname)[0] elif video_path: fname = os.path.basename(video_path) fname = os.path.splitext(fname)[0] else: fname = '' fname += '_splash' # Generate output path path = os.path.join(out_dir, fname) # Generate colors for classes colors = random_colors(len(CLS)) # Image or video? if image_path: # Run model detection and generate the color splash effect print("Running on {}".format(image_path)) # Read image image = skimage.io.imread(image_path) # Detect objects r = model.detect([image], verbose=1)[0] # Color splash splash = color_splash(image, r['rois'], r['masks'], r['class_ids'], CLS, r['scores'], colors=colors) # Save output path += ".png" skimage.io.imsave(path, splash) print("Saved to", path) elif video_path: print('Splash video:', video_path) # Video capture vcapture = cv.VideoCapture(video_path) width = int(vcapture.get(cv.CAP_PROP_FRAME_WIDTH)) height = int(vcapture.get(cv.CAP_PROP_FRAME_HEIGHT)) fps = vcapture.get(cv.CAP_PROP_FPS) print('Video size: ({}, {})'.format(width, height)) print('FPS:', fps) # Define codec and create video writer path += ".avi" vwriter = cv.VideoWriter(path, cv.VideoWriter_fourcc(*'MJPG'), fps, (width, height)) count = 0 success = True while success: print("frame:", count) # Read next image success, image = vcapture.read() if success: # OpenCV returns images as BGR, convert to RGB image = image[..., ::-1] # Detect objects r = model.detect([image], verbose=0)[0] # Color splash splash = color_splash(image, r['rois'], r['masks'], r['class_ids'], CLS, r['scores'], colors=colors) # RGB -> BGR to save image to video splash = splash[..., ::-1] # Add image to video writer vwriter.write(splash) count += 1 vwriter.release() print("Saved to", path) return None
def process_masked_image(image, boxes, masks, class_ids, class_names, mask_threshold=0.0, scores=None, show_mask=True, show_bbox=True, colors=None, captions=None): """ boxes: [num_instance, (y1, x1, y2, x2, class_id)] in image coordinates. masks: [height, width, num_instances] class_ids: [num_instances] class_names: list of class names of the dataset scores: (optional) confidence scores for each box show_mask, show_bbox: To show masks and bounding boxes or not colors: (optional) An array or colors to use with each object captions: (optional) A list of strings to use as captions for each object """ # Number of instances N = boxes.shape[0] if N: assert boxes.shape[0] == masks.shape[-1] == class_ids.shape[0] # Generate random colors dcolors = colors or visualize.random_colors(N) colors = generate_class_colors() # Show area outside image boundaries. height, width = image.shape[:2] font = cv2.FONT_HERSHEY_COMPLEX_SMALL masked_image = image.astype(np.uint8).copy() for i in range(N): color = dcolors[i] score = scores[i] if scores is not None else None # Bounding box if not np.any(boxes[i]): # Skip this instance. Has no bbox. Likely lost in image cropping. continue if score != None: if score < mask_threshold: continue y1, x1, y2, x2 = boxes[i] # Label if not captions: class_id = class_ids[i] label = class_names[class_id] x = random.randint(x1, (x1 + x2) // 2) caption = "{} {:.3f}".format(label, score) if score else label color = colors[class_id] else: caption = captions[i] # Mask mask = masks[:, :, i] masked_image = visualize.apply_mask(masked_image, mask, color) #modify only after the mask application color = tuple([int(ch * 255) for ch in color]) cv2.rectangle(masked_image, (x1, y1), (x2, y2), color, 2) cv2.putText(masked_image, caption, (x1, y1 + 8), font, 1, (255, 255, 255), 1, cv2.LINE_AA) return masked_image
while True: start_time = time.time() ret, images = cap.read() rgb_image = images[0] depth_image = images[1] # print(rgb_image.shape, depth_image.shape) padding_image = np.zeros((960, 1280, 3), np.uint8) padding_image[240:720, 320:960] = rgb_image # 近距離でも遠くに見えるようにパディングする # Run detection results = model.detect([padding_image], verbose=1) # Visualize results result = results[0] N = result['rois'].shape[0] # 検出数 result_image = padding_image.copy() colors = visualize.random_colors(N) for i in range(N): '''クラス関係なく1物体ごと処理を行う''' if class_names[result['class_ids'][i]] in filtered_classNames: # Color color = colors[i] rgb = (round(color[0] * 255), round(color[1] * 255), round(color[2] * 255)) font = cv2.FONT_HERSHEY_SIMPLEX # Bbox result_image = visualize.draw_box(result_image, result['rois'][i], rgb) # Class & Score print(result['rois'][i]) text_top = class_names[result['class_ids'][i]] + ':' + str(result['scores'][i])
def detect(model, weights_path, image_path=None, video_path=None, colors_each_class=None, show=True): assert image_path or video_path # Image or video? if image_path: # Run model detection and generate the color splash effect print("Running on {}".format(image_path)) # Read image image = skimage.io.imread(image_path) # Detect objects r = model.detect([image], verbose=1)[0] if not colors_each_class: colors = visualize.random_colors(len(r['class_ids'])) else: colors = [colors_each_class[cid] for cid in r['class_ids']] # Convert RGB to BGR in opencv: image_cv = image[:, :, ::-1] image_cv = image_cv.copy() # Draw on image: new_img = draw_on_image(image_cv, r, colors=colors) out_dir = weights_path.split(os.path.basename(weights_path))[0] file_name = os.path.basename(image_path) cv2.imwrite(os.path.join(out_dir, 'detect_' + file_name), new_img, [int(cv2.IMWRITE_JPEG_QUALITY), 100]) print("Saved to ", file_name) if show: cv2.imshow('', new_img) cv2.waitKey(0) cv2.destroyAllWindows() return new_img elif video_path: # Video capture vcapture = cv2.VideoCapture(video_path) width = int(vcapture.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(vcapture.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = vcapture.get(cv2.CAP_PROP_FPS) # Define codec and create video writer file_name = "detection_{:%Y%m%dT%H%M%S}.avi".format( datetime.datetime.now()) vwriter = cv2.VideoWriter(file_name, cv2.VideoWriter_fourcc(*'MJPG'), fps, (width, height)) count = 0 success = True while success: print("frame: ", count) # Read next image success, image_cv = vcapture.read() if success: # OpenCV returns images as BGR, convert to RGB image = image_cv[..., ::-1].copy() # Detect objects r = model.detect([image], verbose=0)[0] colors = [colors_each_class[cid] for cid in r['class_ids']] # Draw on image: new_img = draw_on_image(image_cv, r, colors=colors) # Add image to video writer vwriter.write(new_img) count += 1 vwriter.release() print("Saved to ", file_name)
def detect_and_color_splash(model, image_path=None, video_path=None, out_dir=''): assert image_path or video_path class_names = ['BG', 'cable'] if image_path: # Run model detection and generate the color splash effect print("Running on {}".format(args.image)) # Read image image = skimage.io.imread(args.image) # Detect objects r = model.detect([image], verbose=1)[0] # Color splash splash = color_splash(image, r['masks']) visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], class_names, r['scores'], making_image=True) file_name = 'splash.png' #Save output #file_name = "splash_{:%Y%m%dT%H%M%S}.png".format(datetime.datetime.now()) #save_file_name = os.path.join(out_dir, file_name) #skimage.io.imsave(save_file_name, splash) elif video_path: VIDEO_SAVE_DIR = '../../../Videos/save/' import cv2 #import glob #batch_size=1 count = 0 capture = cv2.VideoCapture(video_path) fps = capture.get(cv2.CAP_PROP_FPS) while True: ret, frame = capture.read() #cv2.imshow('Hallo',frame) #frame = frame.astype(np.uint8) # # Bail out when the video file ends if not ret: break # Save each frame of the video to a list #frames = [] count += 1 frame = cv2.cvtColor( np.array(frame), cv2.COLOR_BGR2RGB ) #cv2.cvtColor(numpy.array(pil_image), cv2.COLOR_RGB2BGR) #cv2.imshow('Hallo',frame) #print(count) #frames.append(frame) #if len(frames) == batch_size: r = model.detect([frame], verbose=1)[0] #for i, item in enumerate(zip(frames, results)): #frame = item[0] #r = item[1] colors = visualize.random_colors(len(class_names)) frame = visualize.display_instances_video(count, frame, r['rois'], r['masks'], r['class_ids'], class_names, r['scores'], colors=colors) #(major_ver, minor_ver, subminor_ver) = (cv2.__version__).split('.') # Clear the frames array to start the next batch #frames = [] # Get all image file paths to a list. #frames = [] #images = list(glob.iglob(os.path.join(VIDEO_SAVE_DIR, '*.*'))) # Sort the images by name index. #images = sorted(images, key=lambda x: float(os.path.split(x)[1][:-3])) #video = cv2.VideoCapture(os.path.join(VIDEO_SAVE_DIR, 'trailer1.mp4')); # Find OpenCV version """ images = [] for img in glob.glob(VIDEO_SAVE_DIR+"images/*.jpg"): n= cv2.imread(img) images.append(n) video = cv2.VideoWriter('video.avi',-1,1,(1200,900)) for q in range(1,count): video.write(images[q]) cv2.destroyAllWindows() video.release() (major_ver, minor_ver, subminor_ver) = (cv2.__version__).split('.') if int(major_ver) < 3 : fps = video.get(cv2.cv.CV_CAP_PROP_FPS) print("Frames per second using video.get(cv2.cv.CV_CAP_PROP_FPS): {0}".format(fps)) else : fps = video.get(cv2.CAP_PROP_FPS) #print("Frames per second using video.get(cv2.CAP_PROP_FPS) : {0}".format(fps)) video.release() """ images = [ img for img in sorted(os.listdir(VIDEO_SAVE_DIR)) if img.endswith(".jpg") ] frame = cv2.imread(os.path.join(VIDEO_SAVE_DIR, images[0])) height, width, layers = frame.shape video_name = 'Detection.avi' video = cv2.VideoWriter(video_name, 0, fps, (width, height)) for image in images: video.write(cv2.imread(os.path.join(VIDEO_SAVE_DIR, image))) cv2.destroyAllWindows() video.release() """elif video_path:
def display_instances(image, boxes, masks, class_ids, class_names, scores=None): N = boxes.shape[0] if not N: print("\n*** No instances to display *** \n") else: assert boxes.shape[0] == masks.shape[-1] == class_ids.shape[0] _, ax = plt.subplots(1, figsize=(6.4, 6.4)) # Generate random colors colors = random_colors(N) # Show area outside image boundaries. height, width = image.shape[:2] ax.set_ylim(height, 0) ax.set_xlim(0, width) ax.axis('off') masked_image = image.astype(np.uint32).copy() for i in range(N): color = colors[i] # Bounding box if not np.any(boxes[i]): # Skip this instance. Has no bbox. Likely lost in image cropping. continue y1, x1, y2, x2 = boxes[i] p = patches.Rectangle((x1, y1), x2 - x1, y2 - y1, linewidth=2, alpha=0.7, linestyle="dashed", edgecolor=color, facecolor='none') ax.add_patch(p) # Label class_id = class_ids[i] score = scores[i] if scores is not None else None label = class_names[class_id] x = random.randint(x1, (x1 + x2) // 2) caption = "{} {:.3f}".format(label, score) if score else label ax.text(x1, y1 + 8, caption, color='w', size=11, backgroundcolor="none") mask = masks[:, :, i] masked_image = apply_mask(masked_image, mask, color) # Mask Polygon # Pad to ensure proper polygons for masks that touch image edges. padded_mask = np.zeros( (mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8) padded_mask[1:-1, 1:-1] = mask contours = find_contours(padded_mask, 0.5) for verts in contours: # Subtract the padding and flip (y, x) to (x, y) verts = np.fliplr(verts) - 1 p = Polygon(verts, facecolor="none", edgecolor=color) ax.add_patch(p) ax.imshow(masked_image.astype(np.uint8)) plt.gca().set_axis_off() plt.subplots_adjust(top = 1, bottom = 0, right = 1, left = 0, hspace = 0, wspace = 0) plt.margins(0, 0) plt.gca().xaxis.set_major_locator(plt.NullLocator()) plt.gca().yaxis.set_major_locator(plt.NullLocator()) plt.savefig("static/scored.jpg", dpi=80, facecolor='w', edgecolor='k', bbox_inches='tight', pad_inches = 0)
def draw_boxes(image, boxes=None, refined_boxes=None, masks=None, captions=None, visibilities=None, title="", ax=None): # Number of boxes assert boxes is not None or refined_boxes is not None N = boxes.shape[0] if boxes is not None else refined_boxes.shape[0] # Matplotlib Axis if not ax: _, ax = plt.subplots(1, figsize=(12, 12)) # Generate random colors colors = visualize.random_colors(N) # Show area outside image boundaries. margin = image.shape[0] // 10 ax.set_ylim(image.shape[0] + margin, -margin) ax.set_xlim(-margin, image.shape[1] + margin) ax.axis('off') ax.set_title(title) masked_image = image.astype(np.uint32).copy() for i in range(N): # Box visibility visibility = visibilities[i] if visibilities is not None else 1 if visibility == 0: color = "gray" style = "dotted" alpha = 0.5 elif visibility == 1: color = colors[i] style = "dotted" alpha = 1 elif visibility == 2: color = colors[i] style = "solid" alpha = 1 # Boxes if boxes is not None: if not np.any(boxes[i]): # Skip this instance. Has no bbox. Likely lost in cropping. continue y1, x1, y2, x2 = boxes[i] p = patches.Rectangle((x1, y1), x2 - x1, y2 - y1, linewidth=2, alpha=alpha, linestyle=style, edgecolor=color, facecolor='none') ax.add_patch(p) # Refined boxes if refined_boxes is not None and visibility > 0: ry1, rx1, ry2, rx2 = refined_boxes[i].astype(np.int32) p = patches.Rectangle((rx1, ry1), rx2 - rx1, ry2 - ry1, linewidth=2, edgecolor=color, facecolor='none') ax.add_patch(p) # Connect the top-left corners of the anchor and proposal if boxes is not None: ax.add_line(lines.Line2D([x1, rx1], [y1, ry1], color=color)) # Captions if captions is not None: caption = captions[i] # If there are refined boxes, display captions on them if refined_boxes is not None: y1, x1, y2, x2 = ry1, rx1, ry2, rx2 ax.text(x1, y1, caption, size=11, verticalalignment='top', color='w', backgroundcolor="none", bbox={ 'facecolor': color, 'alpha': 0.5, 'pad': 2, 'edgecolor': 'none' }) ax.imshow(masked_image.astype(np.uint8)) plt.show()
def predict(img_name, model): image = skimage.io.imread(img_name) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) results = model.detect([image], verbose=1) # boxes: [num_instance, (y1, x1, y2, x2, class_id)] in image coordinates boxes = results[0]['rois'] # masks: [height, width, num_instances] masks = results[0]['masks'] # class_ids: [num_instances] class_ids = results[0]['class_ids'] scores = results[0]['scores'] print('scores:', scores) N = boxes.shape[0] print('N:', N) if not N: print("No object") return None, None, None else: assert boxes.shape[0] == masks.shape[-1] == class_ids.shape[0] score_index = np.argmax(scores) print('score_index:', score_index) # if N != 1: # print('该张图片检测出多个物体') # return None , None , None # else: # lf = LabelFile() # # label_img = np.zeros(masks.shape, dtype=np.uint8) # label_img[np.where(masks == 1)] = 255 # label = class_names[class_ids[0]] # # colors = visualize.random_colors(N , bright=True) # # mask_image = visualize.apply_mask(image , masks[:,:,0] , colors[0]) # # # Mask Polygon # padded_mask = np.zeros((masks[:,:,0].shape[0] + 2 , masks[:,:,0].shape[1] + 2) , dtype=np.uint8) # padded_mask[1:-1 , 1:-1] = masks[:,:,0] # contours = find_contours(padded_mask , 0.5) # # json_info = {} # # json_info["shapes"] = [] # shape_info = {} # shape_info["line_color"] = None # shape_info["fill_color"] = None # shape_info["label"] = "141" # shape_info["points"] = [] # # for verts in contours: # verts = np.fliplr(verts) - 1 # # for index , vt in enumerate(verts.tolist()): # if index % 15 == 0: # shape_info["points"].append(vt) # json_info["shapes"].append(shape_info) # # print('json file:' , img_name.replace("png" , "json")) # # write_json(json_info , img_name.replace("png" , "json")) # # lf.save(img_name.replace("png" , "json") , shapes=json_info["shapes"] , imagePath=img_name , fillColor=[255, 0, 0, 128] , lineColor=[0 , 255 , 0 , 128] , flags={}) # # # return label_img , label , mask_image lf = LabelFile() label_img = np.zeros(masks[:, :, score_index].shape, dtype=np.uint8) label_img[np.where(masks[:, :, score_index] == 1)] = 255 label = class_names[class_ids[score_index]] colors = visualize.random_colors(N, bright=True) mask_image = visualize.apply_mask(image, masks[:, :, 0], colors[0]) # Mask Polygon padded_mask = np.zeros((masks[:, :, score_index].shape[0] + 2, masks[:, :, score_index].shape[1] + 2), dtype=np.uint8) padded_mask[1:-1, 1:-1] = masks[:, :, score_index] contours = find_contours(padded_mask, 0.5) json_info = {} json_info["shapes"] = [] shape_info = {} shape_info["line_color"] = None shape_info["fill_color"] = None shape_info["label"] = label shape_info["points"] = [] for verts in contours: verts = np.fliplr(verts) - 1 for index, vt in enumerate(verts.tolist()): if index % 15 == 0: shape_info["points"].append(vt) json_info["shapes"].append(shape_info) print('json file:', img_name.replace("png", "json")) # write_json(json_info , img_name.replace("png" , "json")) lf.save(img_name.replace("png", "json"), shapes=json_info["shapes"], imagePath=os.path.basename(img_name), fillColor=[255, 0, 0, 128], lineColor=[0, 255, 0, 128], flags={}) return label_img, label, mask_image
def display_instances(self, image, boxes, masks, class_ids, class_names, scores=None, title="", figsize=(16, 16), ax=None, show_mask=True, show_bbox=True, colors=None, captions=None): # Number of instances N = boxes.shape[0] if not N: logging.info("\n*** No instances to display *** \n") else: assert boxes.shape[0] == masks.shape[-1] == class_ids.shape[0] _, ax = plt.subplots(1, figsize=figsize) # Generate random colors colors = colors or visualize.random_colors(N) # Show area outside image boundaries. height, width = image.shape[:2] ax.set_ylim(height) ax.set_xlim(width) ax.axis('off') masked_image = image.astype(np.uint32).copy() for i in range(N): color = colors[i] # Bounding box if not np.any(boxes[i]): # Skip this instance. Has no bbox. Likely lost in image cropping. continue y1, x1, y2, x2 = boxes[i] if show_bbox: p = visualize.patches.Rectangle((x1, y1), x2 - x1, y2 - y1, linewidth=2, alpha=0.7, linestyle="dashed", edgecolor=color, facecolor='none') ax.add_patch(p) # Label if not captions: class_id = class_ids[i] score = scores[i] if scores is not None else None label = class_names[class_id] caption = "{} {:.3f}".format(label, score) if score else label else: caption = captions[i] ax.text(x1, y1 + 8, caption, color='w', size=11, backgroundcolor="none") # Mask mask = masks[:, :, i] if show_mask: masked_image = visualize.apply_mask(masked_image, mask, color) # Mask Polygon # Pad to ensure proper polygons for masks that touch image edges. padded_mask = np.zeros((mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8) padded_mask[1:-1, 1:-1] = mask contours = visualize.find_contours(padded_mask, 0.5) for verts in contours: # Subtract the padding and flip (y, x) to (x, y) verts = np.fliplr(verts) - 1 p = Polygon(verts, facecolor="none", edgecolor=color) ax.add_patch(p) ax.imshow(masked_image.astype(np.uint8)) return ax
def draw_predict(image, image_name, boxes, masks, class_ids, class_names, figsize=(12, 12), show_mask=True): # Number of instances N = boxes.shape[0] if not N: print("\n*** No instances to display *** \n") else: assert boxes.shape[0] == masks.shape[-1] == class_ids.shape[0] fig, ax = plt.subplots(1, figsize=figsize) ax.imshow(image) # Generate random colors colors = visualize.random_colors(N) # Show area outside image boundaries. height, width = image.shape[:2] ax.set_ylim(height + 10, -10) ax.set_xlim(-10, width + 10) ax.axis('off') masked_image = image.astype(np.uint32).copy() for i in range(N): # Bounding box if not np.any(boxes[i]): # Skip this instance. Has no bbox. Likely lost in image cropping. continue y1, x1, y2, x2 = boxes[i] p = patches.Rectangle((x1, y1), x2 - x1, y2 - y1, linewidth=2, alpha=0.7, linestyle="dashed", edgecolor=colors[i], facecolor='none') ax.add_patch(p) # Label class_id = class_ids[i] label = class_names[class_id] caption = label ax.text(x1, y1 + 8, caption, color='w', size=11, backgroundcolor="k") # Mask mask = masks[:, :, i] masked_image = visualize.apply_mask(masked_image, mask, colors[i]) # Mask Polygon # Pad to ensure proper polygons for masks that touch image edges. padded_mask = np.zeros((mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8) padded_mask[1:-1, 1:-1] = mask contours = find_contours(padded_mask, 0.5) for verts in contours: # Subtract the padding and flip (y, x) to (x, y) verts = np.fliplr(verts) - 1 p = Polygon(verts, facecolor="none", edgecolor=colors[i]) ax.add_patch(p) ax.imshow(masked_image.astype(np.uint8)) fig.savefig(os.path.join(UPLOAD_FOLDER, 'predict_' + image_name), bbox_inches='tight', pad_inches=0)
def display_instances(image, boxes, masks, class_ids, class_names, scores=None, title="", figsize=(16, 16), ax=None, show_mask=True, show_bbox=True, colors=None, captions=None): """ boxes: [num_instance, (y1, x1, y2, x2, class_id)] in image coordinates. masks: [height, width, num_instances] class_ids: [num_instances] class_names: list of class names of the dataset scores: (optional) confidence scores for each box title: (optional) Figure title show_mask, show_bbox: To show masks and bounding boxes or not figsize: (optional) the size of the image colors: (optional) An array or colors to use with each object captions: (optional) A list of strings to use as captions for each object """ # Number of instances N = boxes.shape[0] if not N: #print("\n*** No instances to display *** \n") else: assert boxes.shape[0] == masks.shape[-1] == class_ids.shape[0] img = img_to_array(image) image = img[:,:,:3] # If no axis is passed, create one and automatically call show() auto_show = False if not ax: fig, ax = plt.subplots(1, figsize=figsize) auto_show = True # Generate random colors colors = colors or random_colors(N) # Show area outside image boundaries. height, width = image.shape[:2] ax.set_ylim(height + 10, -10) ax.set_xlim(-10, width + 10) ax.axis('off') ax.set_title(title) masked_image = image.astype(np.uint32).copy() for i in range(N): color = colors[i] # Bounding box if not np.any(boxes[i]): # Skip this instance. Has no bbox. Likely lost in image cropping. continue y1, x1, y2, x2 = boxes[i] if show_bbox: p = patches.Rectangle((x1, y1), x2 - x1, y2 - y1, linewidth=2, alpha=0.7, linestyle="dashed", edgecolor=color, facecolor='none') ax.add_patch(p) # Label if not captions: class_id = class_ids[i] score = scores[i] if scores is not None else None label = class_names[class_id] caption = "{} {:.3f}".format(label, score) if score else label else: caption = captions[i] ax.text(x1, y1 + 8, caption, color='w', size=11, backgroundcolor="none") # Mask mask = masks[:, :, i] if show_mask: masked_image = apply_mask(masked_image, mask, color) # Mask Polygon # Pad to ensure proper polygons for masks that touch image edges. padded_mask = np.zeros( (mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8) padded_mask[1:-1, 1:-1] = mask contours = find_contours(padded_mask, 0.5) for verts in contours: # Subtract the padding and flip (y, x) to (x, y) verts = np.fliplr(verts) - 1 p = Polygon(verts, facecolor="none", edgecolor=color) ax.add_patch(p) #masked_image = ax.imshow(masked_image.astype(np.uint8)) #mpld3.plugins.connect(fig, extra.InteractiveLegendPlugin()) #return fig_to_html(fig) #return mpld3.fig_to_html(fig) return masked_image.astype(np.uint8)
def display_results(target, image, boxes, masks, class_ids, scores=None, title="", figsize=(16, 16), ax=None, show_mask=True, show_bbox=True, colors=None, captions=None): """ boxes: [num_instance, (y1, x1, y2, x2, class_id)] in image coordinates. masks: [height, width, num_instances] class_ids: [num_instances] class_names: list of class names of the dataset scores: (optional) confidence scores for each box title: (optional) Figure title show_mask, show_bbox: To show masks and bounding boxes or not figsize: (optional) the size of the image colors: (optional) An array or colors to use with each object captions: (optional) A list of strings to use as captions for each object """ # Number of instances N = boxes.shape[0] if not N: print("\n*** No instances to display *** \n") else: assert boxes.shape[0] == masks.shape[-1] == class_ids.shape[0] # If no axis is passed, create one and automatically call show() auto_show = False if not ax: from matplotlib.gridspec import GridSpec # Use GridSpec to show target smaller than image fig = plt.figure(figsize=figsize) gs = GridSpec(3, 3) ax = plt.subplot(gs[:, 1:]) target_ax = plt.subplot(gs[1, 0]) auto_show = True # Generate random colors colors = colors or visualize.random_colors(N) # Show area outside image boundaries. height, width = image.shape[:2] ax.set_ylim(height + 10, -10) ax.set_xlim(-10, width + 10) ax.axis('off') ax.set_title(title) target_height, target_width = target.shape[:2] target_ax.set_ylim(target_height + 10, -10) target_ax.set_xlim(-10, target_width + 10) target_ax.axis('off') # target_ax.set_title('target') masked_image = image.astype(np.uint32).copy() for i in range(N): color = colors[i] # Bounding box if not np.any(boxes[i]): # Skip this instance. Has no bbox. Likely lost in image cropping. continue y1, x1, y2, x2 = boxes[i] if show_bbox: p = visualize.patches.Rectangle((x1, y1), x2 - x1, y2 - y1, linewidth=2, alpha=0.7, linestyle="dashed", edgecolor=color, facecolor='none') ax.add_patch(p) # Label if not captions: class_id = class_ids[i] score = scores[i] if scores is not None else None x = random.randint(x1, (x1 + x2) // 2) caption = "{:.3f}".format(score) if score else 'no score' else: caption = captions[i] ax.text(x1, y1 + 8, caption, color='w', size=11, backgroundcolor="none") # Mask mask = masks[:, :, i] if show_mask: masked_image = visualize.apply_mask(masked_image, mask, color) # Mask Polygon # Pad to ensure proper polygons for masks that touch image edges. padded_mask = np.zeros((mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8) padded_mask[1:-1, 1:-1] = mask contours = visualize.find_contours(padded_mask, 0.5) for verts in contours: # Subtract the padding and flip (y, x) to (x, y) verts = np.fliplr(verts) - 1 p = visualize.Polygon(verts, facecolor="none", edgecolor=color) ax.add_patch(p) ax.imshow(masked_image.astype(np.uint8)) target_ax.imshow(target.astype(np.uint8)) if auto_show: plt.show() return
def visualize(self, image, results, ax=None): from mrcnn.visualize import random_colors, apply_mask from matplotlib import patches, lines from matplotlib.patches import Polygon from skimage.measure import find_contours figsize=(16, 16) scores=None title="" show_mask=True show_bbox=True colors=None captions=None boxes, masks, class_ids = [], [], [] for res in results: boxes.append(res.roi) masks.append(res.mask) class_ids.append(res.cid) boxes = np.array(boxes) masks = np.array(masks) masks = np.swapaxes(np.swapaxes(masks, 0, 2), 0, 1) # print(boxes.shape, masks.shape) class_ids = np.array(class_ids) # print(masks.shape, image.shape) # Number of instances N = boxes.shape[0] if not N: print("\n*** No instances to display *** \n") else: assert boxes.shape[0] == masks.shape[-1] == class_ids.shape[0] # If no axis is passed, create one and automatically call show() auto_show = False if not ax: _, ax = plt.subplots(1, figsize=figsize) auto_show = True # Generate random colors colors = colors or random_colors(N) # Show area outside image boundaries. height, width = image.shape[:2] ax.set_ylim(height + 10, -10) ax.set_xlim(-10, width + 10) ax.axis('off') ax.set_title(title) masked_image = image.astype(np.uint32).copy() for i in range(N): color = colors[i] # Bounding box if not np.any(boxes[i]): # Skip this instance. Has no bbox. Likely lost in image cropping. continue y1, x1, y2, x2 = boxes[i] if show_bbox: p = patches.Rectangle((x1, y1), x2 - x1, y2 - y1, linewidth=2, alpha=0.7, linestyle="dashed", edgecolor=color, facecolor='none') ax.add_patch(p) # Label if not captions: class_id = class_ids[i] score = scores[i] if scores is not None else None label = class_names[class_id] x = random.randint(x1, (x1 + x2) // 2) caption = "{} {:.3f}".format(label, score) if score else label else: caption = captions[i] ax.text(x1, y1 + 8, caption, color='w', size=11, backgroundcolor="none") # Mask mask = masks[:, :, i] if show_mask: masked_image = apply_mask(masked_image, mask, color) # Mask Polygon # Pad to ensure proper polygons for masks that touch image edges. padded_mask = np.zeros( (mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8) padded_mask[1:-1, 1:-1] = mask contours = find_contours(padded_mask, 0.5) for verts in contours: # Subtract the padding and flip (y, x) to (x, y) verts = np.fliplr(verts) - 1 p = Polygon(verts, facecolor="none", edgecolor=color) ax.add_patch(p) ax.imshow(masked_image.astype(np.uint8)) if auto_show: plt.show()
def display_grid(target_list, image_list, boxes_list, masks_list, class_ids_list, scores_list=None, category_names_list=None, title="", figsize=(16, 16), ax=None, show_mask=True, show_bbox=True, colors=None, captions=None, show_scores=True, target_shift=10, fontsize=14, linewidth=2, save=False): """ boxes: [num_instance, (y1, x1, y2, x2, class_id)] in image coordinates. masks: [height, width, num_instances] class_ids: [num_instances] class_names: list of class names of the dataset scores: (optional) confidence scores for each box title: (optional) Figure title show_mask, show_bbox: To show masks and bounding boxes or not figsize: (optional) the size of the image colors: (optional) An array or colors to use with each object captions: (optional) A list of strings to use as captions for each object """ if type(target_list) == list: M = int(np.sqrt(len(target_list))) if len(target_list) - M**2 > 1e-3: M = M + 1 else: M = 1 target_list = [target_list] image_list = [image_list] boxes_list = [boxes_list] masks_list = [masks_list] class_ids_list = [class_ids_list] if scores_list is not None: scores_list = [scores_list] # If no axis is passed, create one and automatically call show() auto_show = False if not ax: from matplotlib.gridspec import GridSpec # Use GridSpec to show target smaller than image fig = plt.figure(figsize=figsize) gs = GridSpec(M, M, hspace=0.1, wspace=0.02, left=0, right=1, bottom=0, top=1) # auto_show = True REMOVE index = 0 for m1 in range(M): for m2 in range(M): ax = plt.subplot(gs[m1, m2]) if index >= len(target_list): continue target = target_list[index] image = image_list[index] boxes = boxes_list[index] masks = masks_list[index] class_ids = class_ids_list[index] scores = scores_list[index] # Number of instances N = boxes.shape[0] if not N: print("\n*** No instances to display *** \n") else: assert boxes.shape[0] == masks.shape[-1] == class_ids.shape[0] # Generate random colors colors = visualize.random_colors(N) # Show area outside image boundaries. height, width = image.shape[:2] ax.set_ylim(height, 0) ax.set_xlim(0, width) ax.axis('off') ax.set_title(title) masked_image = image.astype(np.uint32).copy() for i in range(N): color = colors[i] # Bounding box if not np.any(boxes[i]): # Skip this instance. Has no bbox. Likely lost in image cropping. continue y1, x1, y2, x2 = boxes[i] if show_bbox: p = visualize.patches.Rectangle((x1, y1), x2 - x1, y2 - y1, linewidth=linewidth, alpha=0.7, linestyle="dashed", edgecolor=color, facecolor='none') ax.add_patch(p) # Label if not captions: class_id = class_ids[i] score = scores[i] if scores is not None else None x = random.randint(x1, (x1 + x2) // 2) caption = "{:.3f}".format(score) if score else 'no score' else: caption = captions[i] if show_scores: ax.text(x1, y1 + 8, caption, color='w', size=int(10 / 14 * fontsize), backgroundcolor="none") # Mask mask = masks[:, :, i] if show_mask: masked_image = visualize.apply_mask( masked_image, mask, color) # Mask Polygon # Pad to ensure proper polygons for masks that touch image edges. padded_mask = np.zeros((mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8) padded_mask[1:-1, 1:-1] = mask contours = visualize.find_contours(padded_mask, 0.5) for verts in contours: # Subtract the padding and flip (y, x) to (x, y) verts = np.fliplr(verts) - 1 p = visualize.Polygon(verts, facecolor="none", edgecolor=color) ax.add_patch(p) ax.imshow(masked_image.astype(np.uint8)) target_height, target_width = target.shape[:2] target_height = target_height // 2 target_width = target_width // 2 target_area = target_height * target_width target_scaling = np.sqrt((192 // 2 * 96 // 2) / target_area) target_height = int(target_height * target_scaling) target_width = int(target_width * target_scaling) ax.imshow(target, extent=[ target_shift, target_shift + target_width * 2, height - target_shift, height - target_shift - target_height * 2 ], zorder=9) rect = visualize.patches.Rectangle( (target_shift, height - target_shift), target_width * 2, -target_height * 2, linewidth=5, edgecolor='white', facecolor='none', zorder=10) ax.add_patch(rect) if category_names_list is not None: plt.title(category_names_list[index], fontsize=fontsize) index = index + 1 if auto_show: plt.show() if save: fig.savefig('grid.pdf', bbox_inches='tight') return
def main(): # video = Video(Config.input_video_file) output_video = None if Config.create_masked_video: # output_video = cv2.VideoWriter(CONFIG["output_video_file"], cv2.VideoWriter_fourcc(*"mp4v"), # 30, frame.shape[:-1]) pass background = cv2.imread(Config.background_file) if Config.subtract_background: background = cv2.imread(Config.background_file) pickler = BATRPickle(in_file=Config.input_mask_file) kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)) for frame_n in range(Config.offset, Config.end): store = [] out_frame = np.copy(background) print(frame_n) frame = cv2.imread(f"input/videos/frames/frame{frame_n:06d}.jpg") results = pickler.unpickle("frame{:06d}".format(frame_n)) r = results[0] n = r['rois'].shape[0] colors = visualize.random_colors(n) if Config.subtract_background: frame = (background - frame) + (frame - background) for i in range(n): obj = DetectedObject(_type=class_names[r['class_ids'][i]], _probability=1, image=frame[r['rois'][i][0]:r['rois'][i][2], r['rois'][i][1]:r['rois'][i][3]], _xa=r['rois'][i][1], _ya=r['rois'][i][0], _xb=r['rois'][i][3], _yb=r['rois'][i][2], _w=abs(r['rois'][i][1] - r['rois'][i][3]), _h=abs(r['rois'][i][0] - r['rois'][i][2])) cx_axis = int((obj.xa + obj.xb) / 2) cy_axis = int((obj.ya + obj.yb) / 2) mask = np.float32(255 * r['masks'][:, :, i]) # color_for_obj, obj_index, near_value = color_for_object(obj, store, colors) cv2.imwrite("mask.jpg", mask) # mask = None _alpha = cv2.imread("mask.jpg") # cv2.imshow("cc", mask) # cv2.waitKey(0) # cv2.destroyAllWindows() _forg = np.float32(obj.image) _back = np.float32(background[obj.ya:obj.yb, obj.xa:obj.xb]) _alpha = np.float32(_alpha) / 255 _forg = cv2.multiply(_alpha[obj.ya:obj.yb, obj.xa:obj.xb], _forg) _back = cv2.multiply(1.0 - _alpha[obj.ya:obj.yb, obj.xa:obj.xb], _back) output = cv2.add(_forg, _back) _forg = cv2.dilate(_forg, kernel, iterations=3) # cv2.imshow("cc", _forg) # cv2.waitKey(0) # cv2.destroyAllWindows() out_frame = visualize.apply_mask(frame, r['masks'][:, :, i], random.choice(colors)) # if obj.type == "car": # out_frame = visualize.apply_mask(frame, r['masks'][:, :, i], random.choice(colors)) # # out_frame[obj.ya:obj.yb, obj.xa:obj.xb] = output # # # cv2.putText(frame, "Frame # {}".format(frame_n), # # (250, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 2, cv2.LINE_4) # # if Config.display_object_info: # cv2.putText(frame, "({},{},{})".format(cx_axis, cy_axis, obj.type), # (cx_axis, cy_axis + 100), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2, cv2.LINE_AA) # fgMask = backSub.apply(background_copy) # background_copy = frame track_for_object(out_frame, store, "car") if Config.display_image or Config.display_video: cv2.imshow("output", out_frame) # cv2.imshow("output", fgMa sk) if Config.display_image: cv2.waitKey(0) cv2.destroyAllWindows() elif Config.display_video: if cv2.waitKey(1) & 0xFF == ord('q'): break # if Config.create_masked_video: # frame = cv2.cvtColor(background_copy, cv2.COLOR_BGR2RGB) cv2.imwrite(f"output/ferozpur10012019_maskrcnn/frame{frame_n:06d}.jpg", out_frame) # output_video.write(np.uint8(out_frame)) if Config.display_video: cv2.destroyAllWindows() if Config.create_masked_video and output_video: output_video.release()
def detect_and_color_splash(model, image_path=None, video_path=None): assert image_path or video_path class_names = ["CTV", "CTV-SIB"] # class_names = ['BG', 'L-eye', 'R-eye', 'Brain stem'] # class_names = ['BODY', 'Spinal cord', 'Lung', 'Spinal cord+5mm', 'Airway', 'Heart', 'Brain stem', 'L-Parotid', 'R-Parotid', 'Bladder', # 'Chiasma', 'Rectum', 'R-lens', 'L-lens', 'L-Optic nerve', 'R-eye', # 'R-Optic nerve', 'L-eye', 'Liver', 'Thyroid', "R't Lung", "L't Lung", 'GTV-N', 'CTV-L', "R't_kidney", "L't_kidney", # 'GTV-T', 'Stomach', 'Bladder wall', 'Rectum wall', 'Sig Colon', "R't kidney", # "L't Kidney", "L't OPN", "R't OPN", 'Spinal Cord', 'Body'] # Image or video? if image_path: # Run model detection and generate the color splash effect print("Running on {}".format(image)) # Read image image = skimage.io.imread(image) # Detect objects r = model.detect([image], verbose=1)[0] visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], class_names, r['scores'], making_image=True) # Color splash # splash = color_splash(image, r['masks']) # Save output # file_name = "splash_{:%Y%m%dT%H%M%S}.png".format(datetime.datetime.now()) # skimage.io.imsave(file_name, splash) elif video_path: import cv2 # Video capture vcapture = cv2.VideoCapture(video_path) width = int(vcapture.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(vcapture.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = vcapture.get(cv2.CAP_PROP_FPS) # Define codec and create video writer file_name = "splash_{:%Y%m%dT%H%M%S}.avi".format( datetime.datetime.now()) vwriter = cv2.VideoWriter(file_name, cv2.VideoWriter_fourcc(*'MJPG'), fps, (width, height)) count = 0 success = True colors = visualize.random_colors(len(class_names)) while success: print("frame: ", count) # Read next image success, image = vcapture.read() if success: # OpenCV returns images as BGR, convert to RGB image = image[..., ::-1] # Detect objects r = model.detect([image], verbose=0)[0] splash = visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], class_names, r['scores'], colors=colors, making_video=True) # # Color splash # splash = color_splash(image, r['masks']) # # RGB -> BGR to save image to video # splash = splash[..., ::-1] # Add image to video writer vwriter.write(splash) count += 1 vwriter.release() print("Saved to ", file_name)
boxes = r['rois'] masks = r['masks'] class_ids = r['class_ids'] scores = r['scores'] def meets_criteria(candidate_class, target_classes, candidate_score, target_score): return candidate_class in target_classes and candidate_score >= max( target_score, 0.70) # Number of instances N = boxes.shape[0] colors = random_colors(N) # Filter indices based on class name and score idx = [ i for i in range(N) if meets_criteria(class_names[class_ids[i]], vehicles, scores[i], 0.70) ] for i in idx: mask = masks[:, :, i] mask_image = visualize.convert_mask_to_image(image, mask, colors[i]) if mode == 'roi': # create an empty image with the same dimensions as the original one mask_image_uncropped = np.zeros(original.shape, dtype=np.uint8) # paste the mask onto the empty image
def color_splash(image: np.ndarray, boxes: np.ndarray, masks: np.ndarray, class_ids: np.ndarray, class_names: List[str], scores: np.ndarray, show_mask: bool = True, show_bbox: bool = True, colors: List[Tuple[float]] = None) -> np.ndarray: """Paint color for detected objects Args: image: image to paint color on boxes: matrix of bounding boxes masks: matrix of boolean to indicate if the pixel is a part of detected objects class_ids: class id class_names: class names excluding background, in the same order of ``class_ids`` scores: matrix of detection scores show_mask: whether to paint masks on image show_bbox: whether to paint bounding boxes on image colors: colors to be used for painting Returns: masked_image: image with painting """ # Number of instances N = boxes.shape[0] if not N: return image else: assert boxes.shape[0] == masks.shape[-1] == class_ids.shape[0] # Generate random colors if colors is None: colors = random_colors(len(class_names)) masked_image = image.astype(np.uint8).copy() for i in range(N): # class id class_id = class_ids[i] # get color of class colors_rgb = colors[class_id - 1] color_bgr = colors_rgb[::-1] color_bgr_255 = tuple(round(255 * x) for x in color_bgr) # Bounding box if not np.any(boxes[i]): # Skip this instance. Has no bbox. Likely lost in image cropping. continue y1, x1, y2, x2 = boxes[i] if show_bbox: masked_image = cv.rectangle(masked_image, (x1, y1), (x2, y2), color_bgr_255, 2) # Mask mask = masks[:, :, i] if show_mask: masked_image = apply_mask(masked_image, mask, color_bgr) # Mask Polygon # Pad to ensure proper polygons for masks that touch image edges. padded_mask = np.zeros((mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8) padded_mask[1:-1, 1:-1] = mask contours = find_contours(padded_mask, 0.5) for verts in contours: # Subtract the padding and flip (y, x) to (x, y) verts = np.fliplr(verts) - 1 masked_image = cv.polylines(masked_image, np.int32([verts]), True, color_bgr_255, 3) # Label score = scores[i] if scores is not None else None label = class_names[class_id - 1] # ids include bg but not in names caption = "{} {:.3f}".format(label, score) if score else label cv.putText(masked_image, caption, (x1, y2), cv.FONT_HERSHEY_PLAIN, 1.5, (255, 255, 255), 2, cv.LINE_4) return masked_image
# one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU GPU_COUNT = 1 IMAGES_PER_GPU = 1 if __name__ == '__main__': class_names = ['BG', 'arm', 'ring'] config = InferenceConfig() config.display() model = modellib.MaskRCNN(mode="inference", config=config, model_dir='/home/simon/logs/surgery_200') model_path = PRETRAINED_MODEL_PATH # or if you want to use the latest trained model, you can use : # model_path = model.find_last()[1] model.load_weights(model_path, by_name=True) colors = visualize.random_colors(len(class_names)) cap = cv2.VideoCapture(0) while True: _, frame = cap.read() predictions = model.detect([frame], verbose=1) # We are replicating the same image to fill up the batch_size p = predictions[0] output = visualize.display_instances(frame, p['rois'], p['masks'], p['class_ids'], class_names, p['scores'], colors=colors, real_time=True) cv2.imshow("Mask RCNN", output) k = cv2.waitKey(10) if k & 0xFF == ord('q'): break
def make_visuals(model, classNames=None, imagePath=None, videoPath=None, outPath=None): assert imagePath or videoPath assert outPath classNames = [ 'BG', 'bypass-r', 'bypass-v', 'intake', 'ladderframe', 'pipe1', 'pipe2' ] # Image or video? if imagePath: # Run model detection and generate the color splash effect print("Running on {}".format(imagePath)) # Read image image = skimage.io.imread(args.image) # Detect objects r = model.detect([image], verbose=1)[0] # Create visual and save image visualize_instances(image, r['rois'], r['masks'], r['class_ids'], classNames, r['scores'], making_image=True, file_name=outPath) elif videoPath: import cv2 # Video capture vcapture = cv2.VideoCapture(videoPath) # width = int(vcapture.get(cv2.CAP_PROP_FRAME_WIDTH)) # height = int(vcapture.get(cv2.CAP_PROP_FRAME_HEIGHT)) width = 1600 height = 1600 fps = vcapture.get(cv2.CAP_PROP_FPS) vwriter = cv2.VideoWriter(outPath, cv2.VideoWriter_fourcc(*'MJPG'), fps, (width, height)) count = 0 success = True # For video, we wish classes keep the same mask in frames, generate colors for masks colors = visualize.random_colors(len(classNames)) while success: print("frame: ", count) # Read next image plt.clf() plt.close() success, image = vcapture.read() if success: # OpenCV returns images as BGR, convert to RGB image = image[..., ::-1] # Detect objects r = model.detect([image], verbose=0)[0] # Color splash # frame = color_splash(image, r['masks']) frame = visualize_instances(image, r['rois'], r['masks'], r['class_ids'], classNames, r['scores'], colors=colors, making_video=True) frame = cv2.resize(frame, (width, height)) # Add image to video writer vwriter.write(frame) count += 1 vwriter.release() print("Saved to ", outPath)
#%% [markdown] # Visualize anchors of one cell at the center of the feature map of a specific level. #%% ## Visualize anchors of one cell at the center of the feature map of a specific level # Load and draw random image image_id = np.random.choice(dataset.image_ids, 1)[0] image, image_meta, _, _, _ = modellib.load_image_gt(dataset, config, image_id) fig, ax = plt.subplots(1, figsize=(10, 10)) ax.imshow(image) levels = len(backbone_shapes) for level in range(levels): colors = visualize.random_colors(levels) # Compute the index of the anchors at the center of the image level_start = sum( anchors_per_level[:level]) # sum of anchors of previous levels level_anchors = anchors[level_start:level_start + anchors_per_level[level]] print("Level {}. Anchors: {:6} Feature map Shape: {}".format( level, level_anchors.shape[0], backbone_shapes[level])) center_cell = backbone_shapes[level] // 2 center_cell_index = (center_cell[0] * backbone_shapes[level][1] + center_cell[1]) level_center = center_cell_index * anchors_per_cell center_anchor = anchors_per_cell * ( (center_cell[0] * backbone_shapes[level][1] / config.RPN_ANCHOR_STRIDE**2) \ + center_cell[1] / config.RPN_ANCHOR_STRIDE) level_center = int(center_anchor)
def drawMatchedROI(self, img, reference_img, mtched, unmtched_landmarks, unmtched_detections): # First : unmatched landmarks # Second : unmatched detections n_mtches = len(mtched) + 2 colors = visualize.random_colors(n_mtches) if not n_mtches: logging.info("No instances to display!") return img def _apply_mask(image, mask, color, alpha=0.5): """Apply the given mask to the image. """ for c in range(3): image[:, :, c] = np.where( mask == 1, image[:, :, c] * (1 - alpha) + alpha * color[c], image[:, :, c]) return image def _drawROI(image, box, mask, color, label, score, _id): masked_image = image.copy() # Bounding box if not np.any(box): # Skip this instance. Has no bbox. Likely lost in image cropping. return masked_image y1, x1, y2, x2 = box caption = "<Landmark #{} : {}({:.3f})>".format(_id, label, score) if score \ else "<landmark #{} : {}>".format(_id, label) masked_image = visualize.apply_mask(masked_image, mask, color) masked_image_with_boxes = cv2.rectangle(masked_image, (x1, y1), (x2, y2), np.array(color) * 255, 2) # Mask Polygon padded_mask = np.zeros((mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8) padded_mask[1:-1, 1:-1] = mask # contours = find_contours(padded_mask, 0.5) if CV_MAJOR_VERSION > 3: contours, _ = cv2.findContours(padded_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) else: _, contours, _ = cv2.findContours(padded_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) masked_image_with_contours_plus_boxes = cv2.drawContours( masked_image_with_boxes, contours, -1, (0, 255, 0), 1) out = cv2.putText(masked_image_with_contours_plus_boxes, caption, (x1, y1 - 4), cv2.FONT_HERSHEY_PLAIN, 0.8, np.array(color) * 255, 1) masked_image = out return out MATCHED_COLORS = colors[1:-1] # print("mtched colors", MATCHED_COLORS) UNMATCHED__LANDMARK_COLORS = colors[0] UNMATCHED_DETECTION_COLORS = colors[-1] masked_img = img.copy() masked_reference_img = reference_img.copy() # drawing extraction results offset = 0 for mtch in mtched: landmark, detection = mtch landmark.color = landmark.color or MATCHED_COLORS[offset] masked_reference_img = _drawROI(masked_reference_img, landmark.roi_features['box'], landmark.roi_features['mask'], landmark.color, landmark.label, landmark.score, landmark.seq) masked_img = _drawROI(masked_img, detection.roi_features['box'], detection.roi_features['mask'], landmark.color, detection.label, detection.score, landmark.seq) offset += 1 for unmtched_landmark in unmtched_landmarks: masked_reference_img = _drawROI( masked_reference_img, unmtched_landmark.roi_features['box'], unmtched_landmark.roi_features['mask'], (0., 1., 1.), # Yellow unmtched_landmark.label, unmtched_landmark.score, unmtched_landmark.seq) for unmtched_detection in unmtched_detections: masked_img = _drawROI( masked_img, unmtched_detection.roi_features['box'], unmtched_detection.roi_features['mask'], (0., 0., 1.), # Red unmtched_detection.label, unmtched_detection.score, unmtched_detection.seq) # store the rendered images self._masked_img = masked_img self._masked_reference_img = masked_reference_img # drawing bbox matching results r1, c1 = masked_img.shape[0], masked_img.shape[1] r2, c2 = masked_reference_img.shape[0], masked_reference_img.shape[1] out = np.zeros((max([r1, r2]), c1 + c2, 3), dtype='uint8') out[:r1, :c1] = np.dstack([masked_img]) out[:r2, c1:] = np.dstack([masked_reference_img]) # draw line between matched bbox offset = 0 for mtch in mtched: color = mtch[0].color or np.array(MATCHED_COLORS[offset]) * 255 y1_1, x1_1, y2_1, x2_1 = mtch[1].roi_features['box'] cy_1 = (y2_1 + y1_1) / 2.0 cx_1 = (x2_1 + x1_1) / 2.0 y1_2, x1_2, y2_2, x2_2 = mtch[0].roi_features['box'] cy_2 = (y2_2 + y1_2) / 2.0 cx_2 = (x2_2 + x1_2) / 2.0 # draw lines cv2.line(out, (x1_1, y1_1), (x1_2 + c1, y1_2), color, 1) cv2.line(out, (int(x2_1), int(y1_1)), (int(x2_2) + c1, int(y1_2)), color, 1) cv2.line(out, (int(x2_1), int(y2_1)), (int(x2_2) + c1, int(y2_2)), color, 1) cv2.line(out, (int(x1_1), int(y2_1)), (int(x1_2) + c1, int(y2_2)), color, 1) # cv2.line(out, (int(cx_1),int(cy_1)), (int(cx_2)+c1,int(cy_2)), color, 1) offset += 1 return out