def __main__(): parser = make_parser() args = parser.parse_args() LENGTH_OF_SMALLEST = int(args.bp) FNAME = str(args.plyfile) SPACERS = int(args.spacers) overhangs = None overhangfilename = args.overhangfile if overhangfilename is not None: overhangs = read_overhang_file(overhangfilename) #breakpoint() segs_list = segment_maker.get_segments(FNAME, LENGTH_OF_SMALLEST, SPACERS, nicks=args.nicks, overhangs=overhangs) #now we apply the sequence optimizer. sequence_optimizer.optimize_sequence(segs_list) model = mrdna.SegmentModel( segs_list, local_twist=True, dimensions=(5000, 5000, 5000), ) #model.set_sequence(m13seq(),force=False) #NUPACK add sequence here! prefix = "DNA" run_args = dict( model=model, output_name=prefix, job_id="job-" + prefix, directory=args.directory, gpu=args.gpu, minimization_output_period=int(args.output_period), coarse_local_twist=args.coarse_local_twist, fix_linking_number=args.fix_linking_number, coarse_output_period=int(args.output_period), fine_output_period=int(args.output_period), minimization_steps=0, # int(args.minimization_steps), coarse_steps=int(args.coarse_steps), fine_steps=int(args.fine_steps), backbone_scale=args.backbone_scale, oxdna_steps=args.oxdna_steps, oxdna_output_period=args.oxdna_output_period) export_sequences(model, args.seqfile) simulate(**run_args)
def __main__(): parser = make_parser() args = parser.parse_args() LENGTH_OF_SMALLEST = int(args.bp) FNAME = str(args.plyfile) SPACERS = int(args.spacers) segs_list = segment_maker.get_segments(FNAME, LENGTH_OF_SMALLEST, SPACERS) model = mrdna.SegmentModel( segs_list, local_twist=True, dimensions=(5000, 5000, 5000), ) #apply sequence here model.set_sequence(m13seq(), force=False) prefix = "DNA" run_args = dict( model=model, output_name=prefix, job_id="job-" + prefix, directory=args.directory, gpu=args.gpu, minimization_output_period=int(args.output_period), coarse_local_twist=args.coarse_local_twist, fix_linking_number=args.fix_linking_number, coarse_output_period=int(args.output_period), fine_output_period=int(args.output_period), minimization_steps=0, # int(args.minimization_steps), coarse_steps=int(args.coarse_steps), fine_steps=int(args.fine_steps), backbone_scale=args.backbone_scale, oxdna_steps=args.oxdna_steps, oxdna_output_period=args.oxdna_output_period) export_sequences(model, args.seqfile) simulate(**run_args)
d1_stem.dna.sequence = rev_comp("GGAAGGAGGAGAGGAGAATA"[d1_toehold_length:]) else: d1_stem.dna.sequence = rev_comp("GGAAGGAGGAGAGGAGAATA") d1_loop.dna.sequence = "CATCTA" d5.dna.sequence = "CTTCCTCACAATCAAAATTTACCTAAAA" d5_overhang.dna.sequence = "T"*d1_ssDNA if d1_toehold_length != 0: d5_toehold.dna.sequence = rev_comp(d1_toehold.dna.sequence) d5_stem.dna.sequence = rev_comp(d1_stem.dna.sequence) model = mrdna.SegmentModel( segs_list, local_twist = True, dimensions=(5000,5000,5000), ) #model.set_sequence('T'*100000) prefix = "DNA" run_args = dict( model = model, output_name = prefix, job_id = "job-" + prefix, directory = args.directory, gpu = args.gpu, minimization_output_period = int(args.output_period), coarse_local_twist = args.coarse_local_twist,