def test_iforest_subsampled_features(): # It tests non-regression for #5732 which failed at predict. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(boston.data[:50], boston.target[:50], random_state=rng) clf = IsolationForest(max_features=0.8) clf.fit(X_train, y_train) clf.predict(X_test)
def test_iforest_works(contamination): # toy sample (the last two samples are outliers) X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [6, 3], [-4, 7]] # Test IsolationForest clf = IsolationForest(random_state=rng, contamination=contamination) clf.fit(X) decision_func = -clf.decision_function(X) pred = clf.predict(X) # assert detect outliers: assert np.min(decision_func[-2:]) > np.max(decision_func[:-2]) assert_array_equal(pred, 6 * [1] + 2 * [-1])
def test_iforest_warm_start(): """Test iterative addition of iTrees to an iForest """ rng = check_random_state(0) X = rng.randn(20, 2) # fit first 10 trees clf = IsolationForest(n_estimators=10, max_samples=20, random_state=rng, warm_start=True) clf.fit(X) # remember the 1st tree tree_1 = clf.estimators_[0] # fit another 10 trees clf.set_params(n_estimators=20) clf.fit(X) # expecting 20 fitted trees and no overwritten trees assert len(clf.estimators_) == 20 assert clf.estimators_[0] is tree_1
def test_iforest_with_uniform_data(): """Test whether iforest predicts inliers when using uniform data""" # 2-d array of all 1s X = np.ones((100, 10)) iforest = IsolationForest() iforest.fit(X) rng = np.random.RandomState(0) assert all(iforest.predict(X) == 1) assert all(iforest.predict(rng.randn(100, 10)) == 1) assert all(iforest.predict(X + 1) == 1) assert all(iforest.predict(X - 1) == 1) # 2-d array where columns contain the same value across rows X = np.repeat(rng.randn(1, 10), 100, 0) iforest = IsolationForest() iforest.fit(X) assert all(iforest.predict(X) == 1) assert all(iforest.predict(rng.randn(100, 10)) == 1) assert all(iforest.predict(np.ones((100, 10))) == 1) # Single row X = rng.randn(1, 10) iforest = IsolationForest() iforest.fit(X) assert all(iforest.predict(X) == 1) assert all(iforest.predict(rng.randn(100, 10)) == 1) assert all(iforest.predict(np.ones((100, 10))) == 1)
def test_iforest_deprecation(): iforest = IsolationForest(behaviour='new') warn_msg = "'behaviour' is deprecated in 0.22 and will be removed in 0.24" with pytest.warns(DeprecationWarning, match=warn_msg): iforest.fit(iris.data)
from mrex.ensemble import IsolationForest rng = np.random.RandomState(42) # Generate train data X = 0.3 * rng.randn(100, 2) X_train = np.r_[X + 2, X - 2] # Generate some regular novel observations X = 0.3 * rng.randn(20, 2) X_test = np.r_[X + 2, X - 2] # Generate some abnormal novel observations X_outliers = rng.uniform(low=-4, high=4, size=(20, 2)) # fit the model clf = IsolationForest(max_samples=100, random_state=rng) clf.fit(X_train) y_pred_train = clf.predict(X_train) y_pred_test = clf.predict(X_test) y_pred_outliers = clf.predict(X_outliers) # plot the line, the samples, and the nearest vectors to the plane xx, yy = np.meshgrid(np.linspace(-5, 5, 50), np.linspace(-5, 5, 50)) Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.title("IsolationForest") plt.contourf(xx, yy, Z, cmap=plt.cm.Blues_r) b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='white', s=20, edgecolor='k') b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='green', s=20, edgecolor='k') c = plt.scatter(X_outliers[:, 0],
y = (y != b'normal.').astype(int) print_outlier_ratio(y) n_samples, n_features = X.shape n_samples_train = n_samples // 2 X = X.astype(float) X_train = X[:n_samples_train, :] X_test = X[n_samples_train:, :] y_train = y[:n_samples_train] y_test = y[n_samples_train:] print('--- Fitting the IsolationForest estimator...') model = IsolationForest(n_jobs=-1, random_state=random_state) tstart = time() model.fit(X_train) fit_time = time() - tstart tstart = time() scoring = -model.decision_function(X_test) # the lower, the more abnormal print("--- Preparing the plot elements...") if with_decision_function_histograms: fig, ax = plt.subplots(3, sharex=True, sharey=True) bins = np.linspace(-0.5, 0.5, 200) ax[0].hist(scoring, bins, color='black') ax[0].set_title('Decision function for %s dataset' % dat) ax[1].hist(scoring[y_test == 0], bins, color='b', label='normal data') ax[1].legend(loc="lower right") ax[2].hist(scoring[y_test == 1], bins, color='r', label='outliers') ax[2].legend(loc="lower right")