Example #1
0
def test_iforest_subsampled_features():
    # It tests non-regression for #5732 which failed at predict.
    rng = check_random_state(0)
    X_train, X_test, y_train, y_test = train_test_split(boston.data[:50],
                                                        boston.target[:50],
                                                        random_state=rng)
    clf = IsolationForest(max_features=0.8)
    clf.fit(X_train, y_train)
    clf.predict(X_test)
Example #2
0
def test_iforest_works(contamination):
    # toy sample (the last two samples are outliers)
    X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [6, 3], [-4, 7]]

    # Test IsolationForest
    clf = IsolationForest(random_state=rng, contamination=contamination)
    clf.fit(X)
    decision_func = -clf.decision_function(X)
    pred = clf.predict(X)
    # assert detect outliers:
    assert np.min(decision_func[-2:]) > np.max(decision_func[:-2])
    assert_array_equal(pred, 6 * [1] + 2 * [-1])
Example #3
0
def test_iforest_warm_start():
    """Test iterative addition of iTrees to an iForest """

    rng = check_random_state(0)
    X = rng.randn(20, 2)

    # fit first 10 trees
    clf = IsolationForest(n_estimators=10, max_samples=20,
                          random_state=rng, warm_start=True)
    clf.fit(X)
    # remember the 1st tree
    tree_1 = clf.estimators_[0]
    # fit another 10 trees
    clf.set_params(n_estimators=20)
    clf.fit(X)
    # expecting 20 fitted trees and no overwritten trees
    assert len(clf.estimators_) == 20
    assert clf.estimators_[0] is tree_1
Example #4
0
def test_iforest_with_uniform_data():
    """Test whether iforest predicts inliers when using uniform data"""

    # 2-d array of all 1s
    X = np.ones((100, 10))
    iforest = IsolationForest()
    iforest.fit(X)

    rng = np.random.RandomState(0)

    assert all(iforest.predict(X) == 1)
    assert all(iforest.predict(rng.randn(100, 10)) == 1)
    assert all(iforest.predict(X + 1) == 1)
    assert all(iforest.predict(X - 1) == 1)

    # 2-d array where columns contain the same value across rows
    X = np.repeat(rng.randn(1, 10), 100, 0)
    iforest = IsolationForest()
    iforest.fit(X)

    assert all(iforest.predict(X) == 1)
    assert all(iforest.predict(rng.randn(100, 10)) == 1)
    assert all(iforest.predict(np.ones((100, 10))) == 1)

    # Single row
    X = rng.randn(1, 10)
    iforest = IsolationForest()
    iforest.fit(X)

    assert all(iforest.predict(X) == 1)
    assert all(iforest.predict(rng.randn(100, 10)) == 1)
    assert all(iforest.predict(np.ones((100, 10))) == 1)
Example #5
0
def test_iforest_deprecation():
    iforest = IsolationForest(behaviour='new')
    warn_msg = "'behaviour' is deprecated in 0.22 and will be removed in 0.24"
    with pytest.warns(DeprecationWarning, match=warn_msg):
        iforest.fit(iris.data)
Example #6
0
from mrex.ensemble import IsolationForest

rng = np.random.RandomState(42)

# Generate train data
X = 0.3 * rng.randn(100, 2)
X_train = np.r_[X + 2, X - 2]
# Generate some regular novel observations
X = 0.3 * rng.randn(20, 2)
X_test = np.r_[X + 2, X - 2]
# Generate some abnormal novel observations
X_outliers = rng.uniform(low=-4, high=4, size=(20, 2))

# fit the model
clf = IsolationForest(max_samples=100, random_state=rng)
clf.fit(X_train)
y_pred_train = clf.predict(X_train)
y_pred_test = clf.predict(X_test)
y_pred_outliers = clf.predict(X_outliers)

# plot the line, the samples, and the nearest vectors to the plane
xx, yy = np.meshgrid(np.linspace(-5, 5, 50), np.linspace(-5, 5, 50))
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

plt.title("IsolationForest")
plt.contourf(xx, yy, Z, cmap=plt.cm.Blues_r)

b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='white', s=20, edgecolor='k')
b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='green', s=20, edgecolor='k')
c = plt.scatter(X_outliers[:, 0],
        y = (y != b'normal.').astype(int)
        print_outlier_ratio(y)

    n_samples, n_features = X.shape
    n_samples_train = n_samples // 2

    X = X.astype(float)
    X_train = X[:n_samples_train, :]
    X_test = X[n_samples_train:, :]
    y_train = y[:n_samples_train]
    y_test = y[n_samples_train:]

    print('--- Fitting the IsolationForest estimator...')
    model = IsolationForest(n_jobs=-1, random_state=random_state)
    tstart = time()
    model.fit(X_train)
    fit_time = time() - tstart
    tstart = time()

    scoring = -model.decision_function(X_test)  # the lower, the more abnormal

    print("--- Preparing the plot elements...")
    if with_decision_function_histograms:
        fig, ax = plt.subplots(3, sharex=True, sharey=True)
        bins = np.linspace(-0.5, 0.5, 200)
        ax[0].hist(scoring, bins, color='black')
        ax[0].set_title('Decision function for %s dataset' % dat)
        ax[1].hist(scoring[y_test == 0], bins, color='b', label='normal data')
        ax[1].legend(loc="lower right")
        ax[2].hist(scoring[y_test == 1], bins, color='r', label='outliers')
        ax[2].legend(loc="lower right")