def test_isotonic_dtype(): y = [2, 1, 4, 3, 5] weights = np.array([.9, .9, .9, .9, .9], dtype=np.float64) reg = IsotonicRegression() for dtype in (np.int32, np.int64, np.float32, np.float64): for sample_weight in (None, weights.astype(np.float32), weights): y_np = np.array(y, dtype=dtype) expected_dtype = \ check_array(y_np, dtype=[np.float64, np.float32], ensure_2d=False).dtype res = isotonic_regression(y_np, sample_weight=sample_weight) assert res.dtype == expected_dtype X = np.arange(len(y)).astype(dtype) reg.fit(X, y_np, sample_weight=sample_weight) res = reg.predict(X) assert res.dtype == expected_dtype
def predict(self, X): X = check_array(X) self.key = 1000 return np.ones(X.shape[0])
# Data if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('-e', '--estimators', nargs="+", required=True, choices=ESTIMATORS) args = vars(parser.parse_args()) data_train = fetch_20newsgroups_vectorized(subset="train") data_test = fetch_20newsgroups_vectorized(subset="test") X_train = check_array(data_train.data, dtype=np.float32, accept_sparse="csc") X_test = check_array(data_test.data, dtype=np.float32, accept_sparse="csr") y_train = data_train.target y_test = data_test.target print("20 newsgroups") print("=============") print("X_train.shape = {0}".format(X_train.shape)) print("X_train.format = {0}".format(X_train.format)) print("X_train.dtype = {0}".format(X_train.dtype)) print("X_train density = {0}" "".format(X_train.nnz / np.product(X_train.shape))) print("y_train {0}".format(y_train.shape)) print("X_test {0}".format(X_test.shape)) print("X_test.format = {0}".format(X_test.format))
def fit(self, X, y=None): self.X_shape_ = check_array(X).shape return self
def transform(self, X): X = check_array(X) if X.shape[1] != self.X_shape_[1]: raise ValueError('Bad number of features') return sp.csr_matrix(X)
def predict(self, X): # return 1 if X has more than one element else return 0 X = check_array(X) if X.shape[0] > 1: return np.ones(X.shape[0]) return np.zeros(X.shape[0])
def transform(self, X): X = check_array(X) return X
def fit(self, X, y=None): X = check_array(X) return self
def predict(self, X): X = check_array(X) return np.ones(X.shape[0])
def predict(self, X): check_is_fitted(self) X = check_array(X) return np.ones(X.shape[0])