def test_derivatives(self): np.random.seed(1) las = LASSCF(mf, (4, ), (4, ), spin_sub=(1, )).set(max_cycle_macro=1, ah_level_shift=0).run() ugg = las.get_ugg() ci0_csf = np.random.rand(ugg.ncsf_sub[0][0]) ci0_csf /= np.linalg.norm(ci0_csf) ci0 = ugg.ci_transformers[0][0].vec_csf2det(ci0_csf) las_gorb, las_gci = las.get_grad(mo_coeff=mf.mo_coeff, ci=[[ci0]])[:2] las_grad = np.append(las_gorb, las_gci) las_hess = las.get_hop(ugg=ugg, mo_coeff=mf.mo_coeff, ci=[[ci0]]) self.assertAlmostEqual(lib.fp(las_grad), lib.fp(las_hess.get_grad()), 8) cas_grad, _, cas_hess, _ = newton_casscf.gen_g_hop( mc, mf.mo_coeff, ci0, mc.ao2mo(mf.mo_coeff)) _pack_ci, _unpack_ci = newton_casscf._pack_ci_get_H( mc, mf.mo_coeff, ci0)[-2:] def pack_cas(kappa, ci1): return np.append(mc.pack_uniq_var(kappa), _pack_ci(ci1)) def unpack_cas(x): return mc.unpack_uniq_var(x[:ugg.nvar_orb]), _unpack_ci( x[ugg.nvar_orb:]) def cas2las(y, mode='hx'): yorb, yci = unpack_cas(y) yc = yci[0].ravel().dot(ci0.ravel()) yci[0] -= yc * ci0 yorb *= (0.5 if mode == 'hx' else 1) return ugg.pack(yorb, [yci]) def las2cas(y, mode='x'): yorb, yci = ugg.unpack(y) yc = yci[0][0].ravel().dot(ci0.ravel()) yci[0][0] -= yc * ci0 yorb *= (0.5 if mode == 'x' else 1) return pack_cas(yorb, yci[0]) cas_grad = cas2las(cas_grad) self.assertAlmostEqual(lib.fp(las_grad), lib.fp(cas_grad), 8) x = np.random.rand(ugg.nvar_tot) # orb on input x_las = x.copy() x_las[ugg.nvar_orb:] = 0.0 x_cas = las2cas(x_las, mode='x') hx_las = las_hess._matvec(x_las) hx_cas = cas2las(cas_hess(x_cas), mode='x') self.assertAlmostEqual(lib.fp(hx_las), lib.fp(hx_cas), 8) # CI on input x_las = x.copy() x_las[:ugg.nvar_orb] = 0.0 x_cas = las2cas(x_las, mode='hx') hx_las = las_hess._matvec(x_las) hx_cas = cas2las(cas_hess(x_cas), mode='hx') self.assertAlmostEqual(lib.fp(hx_las), lib.fp(hx_cas), 8)
def test_energy_df(self): las = LASSCF(mf_df, (4, ), (4, ), spin_sub=(1, )).set(conv_tol_grad=1e-5) las.state_average_(weights=[0.5, 0.5], charges=[0, 0], spins=[0, 2], smults=[1, 3]).run() self.assertAlmostEqual(las.e_tot, mc_df.e_tot, 8) self.assertAlmostEqual(las.e_states[0], mc_df.e_states[0], 7) self.assertAlmostEqual(las.e_states[1], mc_df.e_states[1], 7)
import unittest import numpy as np from scipy import linalg from pyscf import lib, gto, scf, dft, fci, mcscf, df from pyscf.tools import molden from c2h4n4_struct import structure as struct from mrh.my_pyscf.mcscf.lasscf_testing import LASSCF dr_nn = 2.0 mol = struct(dr_nn, dr_nn, '6-31g', symmetry=False) mol.verbose = lib.logger.DEBUG mol.output = '/dev/null' mol.spin = 0 mol.build() mf = scf.RHF(mol).run() las = LASSCF(mf, (4, 4), ((3, 1), (1, 3)), spin_sub=(3, 3)) las.max_cycle_macro = 1 las.kernel() las.mo_coeff = np.loadtxt('test_lasci_mo.dat') las.ci = [[np.loadtxt('test_lasci_ci0.dat')], [-np.loadtxt('test_lasci_ci1.dat').T]] ugg = las.get_ugg() h_op = las.get_hop(ugg=ugg) np.random.seed(0) x = np.random.rand(ugg.nvar_tot) def tearDownModule(): global mol, mf, las, ugg, h_op, x mol.stdout.close() del mol, mf, las, ugg, h_op, x
def __enter__(self): self.savedPath = os.getcwd() os.chdir(self.newPath) def __exit__(self, etype, value, traceback): os.chdir(self.savedPath) from mrh.examples.lasscf.c2h6n4.c2h6n4_struct import structure as struct with cd("/home/herme068/gits/mrh/examples/lasscf/c2h6n4"): mol = struct(2.0, 2.0, '6-31g', symmetry=False) mol.verbose = lib.logger.DEBUG mol.output = 'sa_lasscf_slow_ham.log' mol.build() mf = scf.RHF(mol).run() tol = 1e-6 if len(sys.argv) < 2 else float(sys.argv[1]) las = LASSCF(mf, (4, 4), (4, 4)).set(conv_tol_grad=tol) mo = las.localize_init_guess((list(range(3)), list(range(9, 12))), mo_coeff=mf.mo_coeff) las.state_average_(weights=[0.5, 0.5], spins=[[0, 0], [2, -2]]) h2eff_sub, veff = las.kernel(mo)[-2:] e_states = las.e_states ncore, ncas, nocc = las.ncore, las.ncas, las.ncore + las.ncas mo_coeff = las.mo_coeff mo_core = mo_coeff[:, :ncore] mo_cas = mo_coeff[:, ncore:nocc] e0 = las._scf.energy_nuc() + 2 * (( (las._scf.get_hcore() + veff.c / 2) @ mo_core) * mo_core).sum() h1 = mo_cas.conj().T @ (las._scf.get_hcore() + veff.c) @ mo_cas h2 = h2eff_sub[ncore:nocc].reshape(ncas * ncas, ncas * (ncas + 1) // 2) h2 = lib.numpy_helper.unpack_tril(h2).reshape(ncas, ncas, ncas, ncas)
from pyscf import scf, lib, tools, mcscf from pyscf.mcscf.addons import state_average_mix from mrh.my_pyscf.mcscf.lasscf_testing import LASSCF from pyscf.mcscf.newton_casscf import gen_g_hop, _pack_ci_get_H from c2h6n4_struct import structure as struct from mrh.my_pyscf.fci import csf_solver from itertools import product import os mol = struct(2.0, 2.0, '6-31g', symmetry=False) mol.output = 'sa_lasscf_testing.log' mol.verbose = lib.logger.DEBUG mol.build() mf = scf.RHF(mol).run() mo_coeff = mf.mo_coeff.copy() las = LASSCF(mf, (4, 4), (4, 4), spin_sub=(1, 1)) mo_loc = las.localize_init_guess((list(range(3)), list(range(9, 12))), mo_coeff=mo_coeff) las.state_average_(weights=[0.5, 0.5], spins=[[0, 0], [2, -2]]) las.set(max_cycle_macro=1, max_cycle_micro=1, ah_level_shift=0).kernel() np.random.seed(1) ugg = las.get_ugg() ci0 = [np.random.rand(ncsf) for ncsf in ugg.ncsf_sub.ravel()] ci0 = [c / linalg.norm(c) for c in ci0] x0 = np.concatenate([ np.zeros(ugg.nvar_orb), ] + ci0) _, ci0_sa = ugg.unpack(x0) las.mo_coeff = mo_loc las.ci = ci0_sa
import numpy as np from pyscf import gto, scf, tools from c2h6n4_struct import structure as struct from mrh.my_pyscf.mcscf.lasscf_testing import LASSCF rnn0 = 1.23681571 mol = struct(3.0, 3.0, '6-31g', symmetry=False) mf = scf.RHF(mol).run() las = LASSCF(mf, (4, 4), (4, 4), spin_sub=(1, 1)) frag_atom_list = (list(range(3)), list(range(9, 12))) mo0 = las.localize_init_guess(frag_atom_list) las.kernel(mo0) las_scanner = las.as_scanner() pes = np.loadtxt('c2h6n4_pes_old.dat')[:34, :] pes = np.hstack((pes, np.zeros((34, 1)))) pes[33, 3] = las.e_tot # ISN'T THIS SO MUCH BETTER RIDDHISH????? for ix, dr_nn in enumerate(np.arange(2.9, -0.301, -0.1)): mol1 = struct(dr_nn, dr_nn, '6-31g', symmetry=False) pes[32 - ix, 3] = las_scanner(mol1) print(" r_NN {:>11s} {:>13s} {:>13s}".format("CASSCF", "vLASSCF(v1)", "vLASSCF(test)")) for row in pes: print(" {:5.3f} {:11.6f} {:13.8f} {:13.8f}".format(*row))
weights = [ 1.0, ] + [ 0.0, ] * 56 nroots = 57 # End building crazy state list dr_nn = 2.0 mol = struct(dr_nn, dr_nn, '6-31g', symmetry='Cs') mol.verbose = lib.logger.INFO mol.output = 'test_lassi_op.log' mol.spin = 0 mol.build() mf = scf.RHF(mol).run() las = LASSCF(mf, (4, 2, 4), (4, 2, 4)) las.state_average_(weights=weights, **states) las.mo_coeff = las.localize_init_guess( (list(range(3)), list(range(3, 7)), list(range(7, 10))), mf.mo_coeff) las.ci = get_init_guess_ci(las, las.mo_coeff, las.get_h2eff(las.mo_coeff)) np.random.seed(1) for c in las.ci: for iroot in range(len(c)): c[iroot] = np.random.rand(*c[iroot].shape) c[iroot] /= linalg.norm(c[iroot]) orbsym = getattr(las.mo_coeff, 'orbsym', None) if orbsym is None and callable(getattr(las, 'label_symmetry_', None)): orbsym = las.label_symmetry_(las.mo_coeff).orbsym if orbsym is not None: orbsym = orbsym[las.ncore:las.ncore + las.ncas] wfnsym = 0
def test_derivatives(self): np.random.seed(1) las = LASSCF(mf, (4, ), (4, ), spin_sub=(1, )).set(max_cycle_macro=1, ah_level_shift=0) las.state_average_(weights=[0.5, 0.5], charges=[0, 0], spins=[0, 2], smults=[1, 3]).run() ugg = las.get_ugg() ci0_csf = [np.random.rand(ncsf) for ncsf in ugg.ncsf_sub[0]] ci0_csf = [c / np.linalg.norm(c) for c in ci0_csf] ci0 = [ t.vec_csf2det(c) for t, c in zip(ugg.ci_transformers[0], ci0_csf) ] las_gorb, las_gci = las.get_grad(mo_coeff=mf.mo_coeff, ci=[ci0])[:2] las_grad = np.append(las_gorb, las_gci) las_hess = las.get_hop(ugg=ugg, mo_coeff=mf.mo_coeff, ci=[ci0]) self.assertAlmostEqual(lib.fp(las_grad), lib.fp(las_hess.get_grad()), 8) cas_grad, _, cas_hess, _ = newton_casscf.gen_g_hop( mc, mf.mo_coeff, ci0, mc.ao2mo(mf.mo_coeff)) _pack_ci, _unpack_ci = newton_casscf._pack_ci_get_H( mc, mf.mo_coeff, ci0)[-2:] def pack_cas(kappa, ci1): return np.append(mc.pack_uniq_var(kappa), _pack_ci(ci1)) def unpack_cas(x): return mc.unpack_uniq_var(x[:ugg.nvar_orb]), _unpack_ci( x[ugg.nvar_orb:]) def cas2las(y, mode='hx'): yorb, yci = unpack_cas(y) yci = [ 2 * (yc - c * c.ravel().dot(yc.ravel())) for c, yc in zip(ci0, yci) ] yorb *= (0.5 if mode == 'hx' else 1) return ugg.pack(yorb, [yci]) def las2cas(y, mode='x'): yorb, yci = ugg.unpack(y) yci = [ yc - c * c.ravel().dot(yc.ravel()) for c, yc in zip(ci0, yci[0]) ] yorb *= (0.5 if mode == 'x' else 1) return pack_cas(yorb, yci) cas_grad = cas2las(cas_grad) self.assertAlmostEqual(lib.fp(las_grad), lib.fp(cas_grad), 8) x = np.random.rand(ugg.nvar_tot) # orb on input x_las = x.copy() x_las[ugg.nvar_orb:] = 0.0 x_cas = las2cas(x_las, mode='x') hx_las = las_hess._matvec(x_las) hx_cas = cas2las(cas_hess(x_cas), mode='x') self.assertAlmostEqual(lib.fp(hx_las), lib.fp(hx_cas), 8) # CI on input x_las = x.copy() x_las[:ugg.nvar_orb] = 0.0 x_cas = las2cas(x_las, mode='hx') hx_las = las_hess._matvec(x_las) hx_cas = cas2las(cas_hess(x_cas), mode='hx') self.assertAlmostEqual(lib.fp(hx_las), lib.fp(hx_cas), 8)
from mrh.my_pyscf.mcscf.lasscf_testing import LASSCF mol = struct(3.0, 3.0, '6-31g', symmetry=False) mol.verbose = lib.logger.INFO mol.output = 'c2h4n4_spin.log' mol.build() mf = scf.RHF(mol).run() # 1. Diamagnetic singlet ''' The constructor arguments are 1) SCF object 2) List or tuple of ncas for each fragment 3) List or tuple of nelec for each fragment A list or tuple of total-spin multiplicity is supplied in "spin_sub".''' las = LASSCF(mf, (4, 4), (4, 4), spin_sub=(1, 1)) ''' The class doesn't know anything about "fragments" at all. The active space is only "localized" provided one offers an initial guess for the active orbitals that is localized. That is the purpose of the localize_init_guess function. It requires a sequence of sequence of atom numbers, and it projects the orbitals in the ncore:nocc columns into the space of those atoms' AOs. The orbitals in the range ncore:ncore+ncas_sub[0] are the first active subspace, those in the range ncore+ncas_sub[0]:ncore+sum(ncas_sub[:2]) are the second active subspace, and so on.''' frag_atom_list = (list(range(3)), list(range(7, 10))) mo_coeff = las.localize_init_guess(frag_atom_list, mf.mo_coeff) ''' Right now, this function can only (roughly) reproduce the "force_imp=False, confine_guess=True" behavior of the old orbital guess builder. I might add the complement later,
def test_energy(self): las = LASSCF(mf, (4, ), (4, ), spin_sub=(1, )).set(conv_tol_grad=1e-5).run() self.assertAlmostEqual(las.e_tot, mc.e_tot, 8)
def test_energy_hs_df(self): las = LASSCF(mf_hs_df, (4, ), ((4, 0), ), spin_sub=(5, )).set(conv_tol_grad=1e-5).run() self.assertAlmostEqual(las.e_tot, mf_hs_df.e_tot, 8)
def test_symm_df (self): las = LASSCF (mf_df, (4,4), (4,4), spin_sub=(1,1)) mo_coeff = las.localize_init_guess (frags) las.kernel (mo_coeff) self.assertAlmostEqual (las.e_tot, -295.44716017803967, 7)
def test_symm (self): las = LASSCF (mf, (4,4), (4,4), spin_sub=(1,1)) mo_coeff = las.localize_init_guess (frags) las.kernel (mo_coeff) self.assertAlmostEqual (las.e_tot, -295.44779578419946, 7)
mol = struct(3.0, 3.0, '6-31g') mol.symmetry = 'Cs' mol.output = 'c2h4n4_631g.log' mol.verbose = lib.logger.INFO mol.build() mf = scf.RHF(mol).run() # SA-LASSCF object # The first positional argument of "state_average" is the orbital weighting function # Note that there are four states and two fragments and the weights sum to 1 # "Spins" is neleca - nelecb (= 2m for the sake of being an integer) # "Smults" is the desired local spin quantum *MULTIPLICITY* (2s+1) # "Wfnsyms" can also be the names of the irreps but I got lazy # "Charges" should be self-explanatory # If your molecule doesn't have point-group symmetry turned on then don't pass "wfnsyms" las = LASSCF(mf, (5, 5), ((3, 2), (2, 3))) las = las.state_average([0.5, 0.5, 0.0, 0.0], spins=[[1, -1], [-1, 1], [0, 0], [0, 0]], smults=[[2, 2], [2, 2], [1, 1], [1, 1]], charges=[[0, 0], [0, 0], [-1, 1], [1, -1]], wfnsyms=[[1, 1], [1, 1], [0, 0], [0, 0]]) mo_loc = las.localize_init_guess((list(range(5)), list(range(5, 10))), mf.mo_coeff) las.kernel(mo_loc) print("\n---SA-LASSCF---") print("Energy:", las.e_states) # For now, the LASSI diagonalizer is just a post-hoc function call # It returns eigenvalues (energies) in the first position and # eigenvectors (here, a 4-by-4 vector) e_roots, si = las.lassi()
def test_af_df (self): las = LASSCF (mf_hs_df, (4,4), ((4,0),(0,4)), spin_sub=(5,5)) mo_coeff = las.localize_init_guess (frags) las.kernel (mo_coeff) self.assertAlmostEqual (las.e_tot, -295.4466638852035, 7)
def test_ferro_df (self): las = LASSCF (mf_hs_df, (4,4), ((4,0),(4,0)), spin_sub=(5,5)) mo_coeff = las.localize_init_guess (frags) las.kernel (mo_coeff) self.assertAlmostEqual (las.e_tot, mf_hs_df.e_tot, 7)