def _big_plot(in_func, in_mask, in_segm, in_spikes, in_spikes_bg, fd, dvars, outliers, out_file=None): import os.path as op import numpy as np from mriqc.viz.fmriplots import fMRIPlot if out_file is None: fname, ext = op.splitext(op.basename(in_func)) if ext == '.gz': fname, _ = op.splitext(fname) out_file = op.abspath('{}_fmriplot.svg'.format(fname)) title = 'fMRI Summary plot' myplot = fMRIPlot(in_func, in_mask, in_segm, title=title) # myplot.add_spikes(np.loadtxt(in_spikes), title='Axial slice homogeneity (brain mask)') myplot.add_spikes(np.loadtxt(in_spikes_bg), zscored=False) # Add AFNI ouliers plot myplot.add_confounds([np.nan] + np.loadtxt(outliers, usecols=[0]).tolist(), { 'name': 'ouliers', 'units': '%', 'normalize': False, 'ylims': (0.0, None) }) # Pick non-standardize dvars myplot.add_confounds([np.nan] + np.loadtxt(dvars, skiprows=1, usecols=[1]).tolist(), { 'name': 'DVARS', 'units': None, 'normalize': False }) # Add FD myplot.add_confounds( [np.nan] + np.loadtxt(fd, skiprows=1, usecols=[0]).tolist(), { 'name': 'FD', 'units': 'mm', 'normalize': False, 'cutoff': [0.2], 'ylims': (0.0, 0.2) }) myplot.plot() myplot.fig.savefig(out_file, bbox_inches='tight') myplot.fig.clf() return out_file
def _big_plot(in_func, in_mask, in_segm, in_spikes, in_spikes_bg, fd, dvars, out_file=None): import os.path as op import numpy as np from mriqc.viz.fmriplots import fMRIPlot if out_file is None: fname, ext = op.splitext(op.basename(in_func)) if ext == ".gz": fname, _ = op.splitext(fname) out_file = op.abspath("{}_fmriplot.pdf".format(fname)) myplot = fMRIPlot(in_func, in_mask, in_segm) # myplot.add_spikes(np.loadtxt(in_spikes), title='Axial slice homogeneity (brain mask)') myplot.add_spikes(np.loadtxt(in_spikes_bg), zscored=False) myplot.add_confounds([np.nan] + np.loadtxt(fd).tolist(), {"name": "FD", "units": "mm"}) myplot.add_confounds([np.nan] + np.loadtxt(dvars).tolist(), {"name": "DVARS", "units": None, "normalize": False}) myplot.plot() myplot.fig.savefig(out_file, dpi=300, bbox_inches="tight") myplot.fig.clf() return out_file
def _big_plot(in_func, in_mask, in_segm, in_spikes_bg, fd, fd_thres, dvars, outliers, out_file=None): import os.path as op import numpy as np from mriqc.viz.fmriplots import fMRIPlot if out_file is None: fname, ext = op.splitext(op.basename(in_func)) if ext == '.gz': fname, _ = op.splitext(fname) out_file = op.abspath('{}_fmriplot.svg'.format(fname)) title = 'fMRI Summary plot' myplot = fMRIPlot( in_func, in_mask, in_segm, title=title) myplot.add_spikes(np.loadtxt(in_spikes_bg), zscored=False) # Add AFNI ouliers plot myplot.add_confounds([np.nan] + np.loadtxt(outliers, usecols=[0]).tolist(), {'name': 'ouliers', 'units': '%', 'normalize': False, 'ylims': (0.0, None)}) # Pick non-standardize dvars myplot.add_confounds([np.nan] + np.loadtxt(dvars, skiprows=1, usecols=[1]).tolist(), {'name': 'DVARS', 'units': None, 'normalize': False}) # Add FD myplot.add_confounds([np.nan] + np.loadtxt(fd, skiprows=1, usecols=[0]).tolist(), {'name': 'FD', 'units': 'mm', 'normalize': False, 'cutoff': [fd_thres], 'ylims': (0.0, fd_thres)}) myplot.plot() myplot.fig.savefig(out_file, bbox_inches='tight') myplot.fig.clf() return out_file