u_i = u_i * norm  # renormalize
            u_volume.append(u_i)

        # postprocessing
        u_volume = mriutils.postprocess(np.asarray(u_volume),
                                        data_config['dataset']['name'])
        time_reco = time.time() - eval_start_time
        print('reconstruction of {} image took {:f}s'.format(
            u_volume.shape, time_reco))

        print('saving reconstructed image to "{}"'.format(output_name))
        # save mat file
        patient_id = '%s-p%d' % (data_config['dataset']['name'],
                                 data_config['dataset']['patient'])
        mriutils.saveAsMat(u_volume,
                           '%s-vn-%s' % (output_name, patient_id),
                           'result_vn',
                           mat_dict={'normalization': np.asarray(norm)})

        # enhance volume
        v_min, v_max = mriutils.getContrastStretchingLimits(
            np.abs(u_volume), saturated_pixel=0.002)
        volume_enhanced = mriutils.normalize(np.abs(u_volume),
                                             v_min=v_min,
                                             v_max=v_max)

        # save pngs
        for i in range(1, num_slices + 1):
            mriutils.imsave(volume_enhanced[i - 1],
                            '%s-vn-%s-sl%d.png' % (output_name, patient_id, i))
                           '%s-zf-%s' % (output_name, patient_id),
                           'result_zf',
                           mat_dict={'normalization': np.asarray(norm)})
        mriutils.saveAsMat(target_volume,
                           '%s-ref-%s' % (output_name, patient_id),
                           'reference',
                           mat_dict={'normalization': np.asarray(norm)})

        # enhance image with same parameters for all images
        v_min, v_max = mriutils.getContrastStretchingLimits(
            np.abs(target_volume), saturated_pixel=0.002)
        target_enhanced = mriutils.normalize(np.abs(target_volume),
                                             v_min=v_min,
                                             v_max=v_max)
        u_i_enhanced = mriutils.normalize(np.abs(u_volume),
                                          v_min=v_min,
                                          v_max=v_max)
        zf_enhanced = mriutils.normalize(np.abs(zf_volume),
                                         v_min=v_min,
                                         v_max=v_max)

        # save pngs
        for i in range(1, num_slices + 1):
            mriutils.imsave(u_i_enhanced[i - 1],
                            '%s-vn-%s-sl%d.png' % (output_name, patient_id, i))
            mriutils.imsave(
                target_enhanced[i - 1],
                '%s-ref-%s-sl%d.png' % (output_name, patient_id, i))
            mriutils.imsave(zf_enhanced[i - 1],
                            '%s-zf-%s-sl%d.png' % (output_name, patient_id, i))
Example #3
0
        print('start reconstruction')
        eval_start_time = time.time()
        feed_dict, norm = data.get_test_feed_dict(
            data_config['dataset'],
            data_config['dataset']['patient'],
            data_config['dataset']['slice'],
            return_norm=True)

        # get the reconstruction, re-normalize and postprocesss it
        u_i = sess.run(u_op, feed_dict=feed_dict)[0]
        u_i = u_i * norm  # renormalize
        u_i = mriutils.postprocess(u_i, data_config['dataset']['name'])
        time_reco = time.time() - eval_start_time
        print('reconstruction of {} image took {:f}s'.format(
            u_i.shape, time_reco))

        print('saving reconstructed image to "{}"'.format(output_name))
        # save mat file
        patient_id = '%s-p%d-sl%d' % (data_config['dataset']['name'],
                                      data_config['dataset']['patient'],
                                      data_config['dataset']['slice'])
        mriutils.saveAsMat(u_i,
                           '%s-vn-%s.mat' % (output_name, patient_id),
                           'result_vn',
                           mat_dict={'normalization': np.asarray(norm)})

        # enhance image and save as png
        u_i_enhanced = mriutils.contrastStretching(np.abs(u_i), 0.002)
        mriutils.imsave(u_i_enhanced,
                        '%s-vn-%s.png' % (output_name, patient_id))
        print('reconstruction of {} image took {:f}s'.format(u_i.shape, time_reco))

        print('saving reconstructed image to "{}"'.format(output_name))
        # save mat files
        patient_id = '%s-p%d-sl%d' % (data_config['dataset']['name'],
                                      data_config['dataset']['patient'],
                                      data_config['dataset']['slice'])
        mriutils.saveAsMat(u_i, '%s-vn-%s' % (output_name, patient_id), 'result_vn',
                  mat_dict={'normalization': np.asarray(norm)})
        mriutils.saveAsMat(zero_filling, '%s-zf-%s' % (output_name, patient_id), 'result_zf',
                  mat_dict={'normalization': np.asarray(norm)})
        mriutils.saveAsMat(target, '%s-ref-%s' % (output_name, patient_id), 'reference',
                  mat_dict={'normalization': np.asarray(norm)})

        # enhance image with same parameters for all images
        v_min, v_max = mriutils.getContrastStretchingLimits(np.abs(target),
                                                            saturated_pixel=0.002)
        target_enhanced = mriutils.normalize(np.abs(target), v_min=v_min, v_max=v_max)
        u_i_enhanced = mriutils.normalize(np.abs(u_i), v_min=v_min, v_max=v_max)
        zf_enhanced = mriutils.normalize(np.abs(zero_filling), v_min=v_min, v_max=v_max)

        # save pngs
        mriutils.imsave(u_i_enhanced,
                        '%s-vn-%s.png' % (output_name, patient_id))

        mriutils.imsave(target_enhanced,
                        '%s-ref-%s.png' % (output_name, patient_id))

        mriutils.imsave(zf_enhanced,
                        '%s-zf-%s.png' % (output_name, patient_id))