Example #1
0
    def _hadoop_log_dirs(self, output_dir=None):
        """Yield all possible places to look for hadoop logs."""
        # hadoop_log_dirs opt overrides all this
        if self._opts['hadoop_log_dirs']:
            for path in self._opts['hadoop_log_dirs']:
                yield path
            return

        hadoop_log_dir = os.environ.get('HADOOP_LOG_DIR')
        if hadoop_log_dir:
            yield hadoop_log_dir

        yarn = uses_yarn(self.get_hadoop_version())

        if yarn:
            yarn_log_dir = os.environ.get('YARN_LOG_DIR')
            if yarn_log_dir:
                yield yarn_log_dir

            yield _DEFAULT_YARN_HDFS_LOG_DIR

        if output_dir:
            # Cloudera style of logging
            yield posixpath.join(output_dir, '_logs')

        for hadoop_dir in self._hadoop_dirs():
            yield posixpath.join(hadoop_dir, 'logs')

        # hard-coded fallback paths
        if yarn:
            for path in _FALLBACK_HADOOP_YARN_LOG_DIRS:
                yield path

        for path in _FALLBACK_HADOOP_LOG_DIRS:
            yield path
Example #2
0
    def _hadoop_log_dirs(self, output_dir=None):
        """Yield all possible places to look for hadoop logs."""
        # hadoop_log_dirs opt overrides all this
        if self._opts['hadoop_log_dirs']:
            for path in self._opts['hadoop_log_dirs']:
                yield path
            return

        hadoop_log_dir = os.environ.get('HADOOP_LOG_DIR')
        if hadoop_log_dir:
            yield hadoop_log_dir

        if uses_yarn(self.get_hadoop_version()):
            yarn_log_dir = os.environ.get('YARN_LOG_DIR')
            if yarn_log_dir:
                yield yarn_log_dir

        if output_dir:
            # Cloudera style of logging
            yield posixpath.join(output_dir, '_logs')

        for hadoop_dir in self._hadoop_dirs():
            yield posixpath.join(hadoop_dir, 'logs')

        # hard-coded log paths for EMR, so this can work out-of-the-box
        for path in _EMR_HADOOP_LOG_DIRS:
            yield path
Example #3
0
    def _interpret_task_logs(self, log_interpretation, partial=True):
        """Fetch task syslogs and stderr, and add 'task' to interpretation."""
        if 'task' in log_interpretation and (
                partial or not log_interpretation['task'].get('partial')):
            return   # already interpreted

        step_interpretation = log_interpretation.get('step') or {}

        application_id = step_interpretation.get('application_id')
        job_id = step_interpretation.get('job_id')
        output_dir = step_interpretation.get('output_dir')

        yarn = uses_yarn(self.get_hadoop_version())

        if yarn:
            if not application_id:
                log.warning("Can't fetch task logs; missing application ID")
                return
        else:
            if not job_id:
                log.warning("Can't fetch task logs; missing job ID")
                return

        log_interpretation['task'] = _interpret_task_logs(
            self.fs,
            self._ls_task_syslogs(
                application_id=application_id,
                job_id=job_id,
                output_dir=output_dir),
            partial=partial,
            stderr_callback=_log_parsing_task_stderr)
Example #4
0
    def _interpret_task_logs(self, log_interpretation):
        """Find and interpret the task logs, storing the
        interpretation in ``log_interpretation['task']``."""
        if 'task' not in log_interpretation:
            # get job/application ID from output of hadoop command
            step_interpretation = log_interpretation.get('step') or {}
            application_id = step_interpretation.get('application_id')
            job_id = step_interpretation.get('job_id')

            yarn = uses_yarn(self.get_hadoop_version())

            if yarn and application_id is None:
                log.warning("Can't fetch task logs without application ID")
                return {}
            elif not yarn and job_id is None:
                log.warning("Can't fetch task logs without job ID")
                return {}

            # Note: this is unlikely to be super-helpful on "real" (multi-node)
            # pre-YARN Hadoop because task logs aren't generally shipped to a
            # local directory. It's a start, anyways. See #1201.
            def stream_task_log_dirs():
                for log_dir in unique(
                    self._hadoop_log_dirs(
                        output_dir=step_interpretation.get('output_dir'))):

                    if yarn:
                        path = self.fs.join(
                            log_dir, 'userlogs', application_id)
                    else:
                        # sometimes pre-YARN attempt logs are organized by
                        # job_id,
                        # sometimes not. Play it safe
                        path = self.fs.join(log_dir, 'userlogs')

                    if self.fs.exists(path):
                        log.info('Scanning task syslogs in %s' % path)
                        yield [path]

            # wrap _ls_task_syslogs() to add logging
            def ls_task_syslogs():
                # there should be at most one history log
                for match in _ls_task_syslogs(
                        self.fs, stream_task_log_dirs(),
                        application_id=application_id, job_id=job_id):

                    # TODO: this isn't really correct because
                    # _interpret_task_logs() sorts the logs paths and
                    # scans starting at the most recent one. Probably
                    # should have _ls_task_syslogs() do the sorting.
                    log.info('  Scanning for errors: %s' % match['path'])
                    yield match

            log_interpretation['task'] = _interpret_task_logs(
                self.fs, ls_task_syslogs())

        return log_interpretation['task']
Example #5
0
File: hadoop.py Project: Yelp/mrjob
    def ls(self, path_glob):
        components = urlparse(path_glob)
        hdfs_prefix = '%s://%s' % (components.scheme, components.netloc)

        version = self.get_hadoop_version()

        # use ls -R on Hadoop 2 (see #1152)
        if uses_yarn(version):
            args = ['fs', '-ls', '-R', path_glob]
        else:
            args = ['fs', '-lsr', path_glob]

        try:
            stdout = self.invoke_hadoop(args, return_stdout=True,
                                        ok_stderr=[_HADOOP_LS_NO_SUCH_FILE])
        except CalledProcessError:
            raise IOError("Could not ls %s" % path_glob)

        for line in BytesIO(stdout):
            line = line.rstrip(b'\r\n')

            # ignore total item count
            if line.startswith(b'Found '):
                continue

            fields = line.split(b' ')

            # Throw out directories
            if fields[0].startswith(b'd'):
                continue

            # Try to figure out which part of the line is the path
            # Expected lines:
            #
            # HDFS:
            # -rw-r--r--   3 dave users       3276 2010-01-13 14:00 /foo/bar
            #
            # S3:
            # -rwxrwxrwx   1          3276 010-01-13 14:00 /foo/bar
            path_index = None
            for index, field in enumerate(fields):
                # look for time field, and pick one after that
                # (can't use field[2] because that's an int in Python 3)
                if len(field) == 5 and field[2:3] == b':':
                    path_index = (index + 1)
            if not path_index:
                raise IOError("Could not locate path in string %r" % line)

            path = to_unicode(line.split(b' ', path_index)[-1])
            # handle fully qualified URIs from newer versions of Hadoop ls
            # (see Pull Request #577)
            if is_uri(path):
                yield path
            else:
                yield hdfs_prefix + path
Example #6
0
File: hadoop.py Project: Yelp/mrjob
    def mkdir(self, path):
        version = self.get_hadoop_version()

        # use -p on Hadoop 2 (see #991, #845)
        if uses_yarn(version):
            args = ['fs', '-mkdir', '-p', path]
        else:
            args = ['fs', '-mkdir', path]

        try:
            self.invoke_hadoop(args, ok_stderr=[_HADOOP_FILE_EXISTS_RE])
        except CalledProcessError:
            raise IOError("Could not mkdir %s" % path)
Example #7
0
    def _interpret_task_logs(
            self, log_interpretation, step_type, error_attempt_ids=(),
            partial=True):
        """Fetch task syslogs and stderr, and add 'task' to interpretation."""
        if 'task' in log_interpretation and (
                partial or not log_interpretation['task'].get('partial')):
            return   # already interpreted

        if not self._read_logs():
            return

        step_interpretation = log_interpretation.get('step') or {}

        application_id = step_interpretation.get('application_id')
        job_id = step_interpretation.get('job_id')
        output_dir = step_interpretation.get('output_dir')

        yarn = uses_yarn(self.get_hadoop_version())

        attempt_to_container_id = log_interpretation.get('history', {}).get(
            'attempt_to_container_id', {})

        if yarn:
            if not application_id:
                if not log_interpretation.get('no_job'):
                    log.warning(
                        "Can't fetch task logs; missing application ID")
                return
        else:
            if not job_id:
                if not log_interpretation.get('no_job'):
                    log.warning("Can't fetch task logs; missing job ID")
                return

        if _is_spark_step_type(step_type):
            interpret_func = _interpret_spark_task_logs
        else:
            interpret_func = _interpret_task_logs

        log_interpretation['task'] = interpret_func(
            self.fs,
            self._ls_task_logs(
                step_type,
                application_id=application_id,
                job_id=job_id,
                output_dir=output_dir,
                error_attempt_ids=error_attempt_ids,
                attempt_to_container_id=attempt_to_container_id,
            ),
            partial=partial,
            log_callback=_log_parsing_task_log)
Example #8
0
    def _interpret_task_logs(self,
                             log_interpretation,
                             step_type,
                             error_attempt_ids=(),
                             partial=True):
        """Fetch task syslogs and stderr, and add 'task' to interpretation."""
        if 'task' in log_interpretation and (
                partial or not log_interpretation['task'].get('partial')):
            return  # already interpreted

        step_interpretation = log_interpretation.get('step') or {}

        application_id = step_interpretation.get('application_id')
        job_id = step_interpretation.get('job_id')
        output_dir = step_interpretation.get('output_dir')

        yarn = uses_yarn(self.get_hadoop_version())

        attempt_to_container_id = log_interpretation.get('history', {}).get(
            'attempt_to_container_id', {})

        if yarn:
            if not application_id:
                if not log_interpretation.get('no_job'):
                    log.warning(
                        "Can't fetch task logs; missing application ID")
                return
        else:
            if not job_id:
                if not log_interpretation.get('no_job'):
                    log.warning("Can't fetch task logs; missing job ID")
                return

        if _is_spark_step_type(step_type):
            interpret_func = _interpret_spark_task_logs
        else:
            interpret_func = _interpret_task_logs

        log_interpretation['task'] = interpret_func(
            self.fs,
            self._ls_task_logs(
                step_type,
                application_id=application_id,
                job_id=job_id,
                output_dir=output_dir,
                error_attempt_ids=error_attempt_ids,
                attempt_to_container_id=attempt_to_container_id,
            ),
            partial=partial,
            log_callback=_log_parsing_task_log)
Example #9
0
    def rm(self, path_glob):
        if not is_uri(path_glob):
            super(HadoopFilesystem, self).rm(path_glob)

        version = self.get_hadoop_version()
        if uses_yarn(version):
            args = ['fs', '-rm', '-R', '-f', '-skipTrash', path_glob]
        else:
            args = ['fs', '-rmr', '-skipTrash', path_glob]

        try:
            self.invoke_hadoop(args,
                               return_stdout=True,
                               ok_stderr=[_HADOOP_RM_NO_SUCH_FILE])
        except CalledProcessError:
            raise IOError("Could not rm %s" % path_glob)
Example #10
0
File: hadoop.py Project: Yelp/mrjob
    def rm(self, path_glob):
        if not is_uri(path_glob):
            super(HadoopFilesystem, self).rm(path_glob)

        version = self.get_hadoop_version()
        if uses_yarn(version):
            args = ['fs', '-rm', '-R', '-f', '-skipTrash', path_glob]
        else:
            args = ['fs', '-rmr', '-skipTrash', path_glob]

        try:
            self.invoke_hadoop(
                args,
                return_stdout=True, ok_stderr=[_HADOOP_RM_NO_SUCH_FILE])
        except CalledProcessError:
            raise IOError("Could not rm %s" % path_glob)
Example #11
0
    def _find_probable_cause_of_failure(self,
                                        application_id=None,
                                        job_id=None,
                                        output_dir=None,
                                        **ignored):
        """Find probable cause of failure. Currently we just scan task logs.

        On YARN, you must set application_id, and pre-YARN, you must set
        job_id.
        """
        # package up logs for _find_error_intask_logs(),
        # and log where we're looking.
        hadoop_version = self.get_hadoop_version()
        yarn = uses_yarn(hadoop_version)

        if yarn and application_id is None:
            log.warning("No application ID!")
            return None

        if not yarn and job_id is None:
            log.warning("No job ID!")
            return None

        # Note: this is unlikely to be super-helpful on "real" (multi-node)
        # pre-YARN Hadoop because task logs aren't generally shipped to a local
        # directory. It's a start, anyways. See #1201.
        def stream_task_log_dirs():
            for log_dir in unique(
                    self._hadoop_log_dirs(output_dir=output_dir)):

                if yarn:
                    path = self.fs.join(log_dir, 'userlogs', application_id)
                else:
                    # sometimes pre-YARN attempt logs are organized by job_id,
                    # sometimes not. Play it safe
                    path = self.fs.join(log_dir, 'userlogs')

                if self.fs.exists(path):
                    log.info('looking for logs in %s' % path)
                    yield [path]

        return _find_error_in_task_logs(self.fs,
                                        stream_task_log_dirs(),
                                        hadoop_version,
                                        application_id=application_id,
                                        job_id=job_id)
Example #12
0
    def _find_probable_cause_of_failure(self, application_id=None, job_id=None,
                                        output_dir=None, **ignored):
        """Find probable cause of failure. Currently we just scan task logs.

        On YARN, you must set application_id, and pre-YARN, you must set
        job_id.
        """
        # package up logs for _find_error_intask_logs(),
        # and log where we're looking.
        hadoop_version = self.get_hadoop_version()
        yarn = uses_yarn(hadoop_version)

        if yarn and application_id is None:
            log.warning("No application ID!")
            return None

        if not yarn and job_id is None:
            log.warning("No job ID!")
            return None

        # Note: this is unlikely to be super-helpful on "real" (multi-node)
        # pre-YARN Hadoop because task logs aren't generally shipped to a local
        # directory. It's a start, anyways. See #1201.
        def stream_task_log_dirs():
            for log_dir in unique(
                    self._hadoop_log_dirs(output_dir=output_dir)):

                if yarn:
                    path = self.fs.join(log_dir, 'userlogs', application_id)
                else:
                    # sometimes pre-YARN attempt logs are organized by job_id,
                    # sometimes not. Play it safe
                    path = self.fs.join(log_dir, 'userlogs')

                if self.fs.exists(path):
                    log.info('looking for logs in %s' % path)
                    yield [path]

        return _find_error_in_task_logs(
            self.fs, stream_task_log_dirs(), hadoop_version,
            application_id=application_id, job_id=job_id)
Example #13
0
 def test_uses_yarn(self):
     self.assertEqual(uses_yarn('0.22'), False)
     self.assertEqual(uses_yarn('0.23'), True)
     self.assertEqual(uses_yarn('0.24'), True)
     self.assertEqual(uses_yarn('1.0.0'), False)
     self.assertEqual(uses_yarn('2.0.0'), True)
Example #14
0
def mock_hadoop_uses_yarn(environ):
    return uses_yarn(environ['MOCK_HADOOP_VERSION'])
Example #15
0
 def test_uses_yarn(self):
     self.assertEqual(uses_yarn('0.22'), False)
     self.assertEqual(uses_yarn('0.23'), True)
     self.assertEqual(uses_yarn('0.24'), True)
     self.assertEqual(uses_yarn('1.0.0'), False)
     self.assertEqual(uses_yarn('2.0.0'), True)
Example #16
0
def mock_hadoop_uses_yarn(environ):
    return uses_yarn(environ['MOCK_HADOOP_VERSION'])
Example #17
0
def _find_error_in_task_logs(fs, log_dirs_stream, hadoop_version,
                             application_id=None, job_id=None):
    """Given a filesystem and a stream of lists of log dirs to search in,
    find the last error and return details about it. *hadoop_version*
    is required, as task logs have very different paths in YARN.

    In YARN, you must set *application_id*, and pre-YARN, you must set
    *job_id*, or we'll bail out and return None.

    Returns a dictionary with the following keys ("optional" means
    that something may be None):

    syslog: dict with keys:
       path: path of syslog we found error in
       error: error details; dict with keys:
           exception: Java exception (as string)
           stack_trace: array of lines with Java stack trace
       split: optional input split we were reading; dict with keys:
           path: path of input file
           start_line: first line of split (0-indexed)
           num_lines: number of lines in split
    stderr: optional dict with keys:
       path: path of stderr corresponding to syslog
       error: optional error details; dict with keys:
           exception: string  (Python exception)
           traceback: array of lines with Python stack trace
    type: always set to 'task'
    """
    syslog_paths = []

    yarn = uses_yarn(hadoop_version)

    if ((yarn and application_id is None) or (not yarn and job_id is None)):
        return None

    # we assume that each set of log paths contains the same copies
    # of syslogs, so stop once we find any non-empty set of log dirs
    for log_dirs in log_dirs_stream:
        if yarn:
            syslog_paths = _ls_yarn_task_syslogs(fs, log_dirs,
                                                 application_id=application_id)
        else:
            syslog_paths = _ls_pre_yarn_task_syslogs(fs, log_dirs,
                                                     job_id=job_id)

        if syslog_paths:
            break

    for syslog_path in syslog_paths:
        log.debug('Looking for error in %s' % syslog_path)
        syslog_info = _parse_task_syslog(_cat_log(fs, syslog_path))

        if not syslog_info['error']:
            continue

        # found error! see if we can explain it

        # TODO: don't bother if error wasn't due to child process
        stderr_path = _stderr_for_syslog(syslog_path)

        stderr_info = _parse_python_task_stderr(_cat_log(fs, stderr_path))

        # output error info
        syslog_info['path'] = syslog_path
        stderr_info['path'] = stderr_path

        return dict(type='task', syslog=syslog_info, stderr=stderr_info)

    return None
Example #18
0
 def test_uses_yarn(self):
     self.assertEqual(uses_yarn("0.22"), False)
     self.assertEqual(uses_yarn("0.23"), True)
     self.assertEqual(uses_yarn("0.24"), True)
     self.assertEqual(uses_yarn("1.0.0"), False)
     self.assertEqual(uses_yarn("2.0.0"), True)
Example #19
0
def _find_error_in_task_logs(fs,
                             log_dirs_stream,
                             hadoop_version,
                             application_id=None,
                             job_id=None):
    """Given a filesystem and a stream of lists of log dirs to search in,
    find the last error and return details about it. *hadoop_version*
    is required, as task logs have very different paths in YARN.

    In YARN, you must set *application_id*, and pre-YARN, you must set
    *job_id*, or we'll bail out and return None.

    Returns a dictionary with the following keys ("optional" means
    that something may be None):

    syslog: dict with keys:
       path: path of syslog we found error in
       error: error details; dict with keys:
           exception: Java exception (as string)
           stack_trace: array of lines with Java stack trace
       split: optional input split we were reading; dict with keys:
           path: path of input file
           start_line: first line of split (0-indexed)
           num_lines: number of lines in split
    stderr: optional dict with keys:
       path: path of stderr corresponding to syslog
       error: optional error details; dict with keys:
           exception: string  (Python exception)
           traceback: array of lines with Python stack trace
    type: always set to 'task'
    """
    syslog_paths = []

    yarn = uses_yarn(hadoop_version)

    if ((yarn and application_id is None) or (not yarn and job_id is None)):
        return None

    # we assume that each set of log paths contains the same copies
    # of syslogs, so stop once we find any non-empty set of log dirs
    for log_dirs in log_dirs_stream:
        if yarn:
            syslog_paths = _ls_yarn_task_syslogs(fs,
                                                 log_dirs,
                                                 application_id=application_id)
        else:
            syslog_paths = _ls_pre_yarn_task_syslogs(fs,
                                                     log_dirs,
                                                     job_id=job_id)

        if syslog_paths:
            break

    for syslog_path in syslog_paths:
        log.debug('Looking for error in %s' % syslog_path)
        syslog_info = _parse_task_syslog(_cat_log(fs, syslog_path))

        if not syslog_info['error']:
            continue

        # found error! see if we can explain it

        # TODO: don't bother if error wasn't due to child process
        stderr_path = _stderr_for_syslog(syslog_path)

        stderr_info = _parse_python_task_stderr(_cat_log(fs, stderr_path))

        # output error info
        syslog_info['path'] = syslog_path
        stderr_info['path'] = stderr_path

        return dict(type='task', syslog=syslog_info, stderr=stderr_info)

    return None