def test_subsampler_lag2(): n_traj, n_samples, n_features = 3, 100, 7 lag_time = 2 X_all_0 = [random.normal(size=(n_samples, n_features)) for i in range(n_traj)] q_0 = np.concatenate(X_all_0) subsampler = Subsampler(lag_time=lag_time) X_all_1 = subsampler.transform(X_all_0) q_1 = np.concatenate(X_all_1) eq(((n_samples - lag_time + 2) * n_traj, n_features), q_1.shape) subsampler = Subsampler(lag_time=lag_time, sliding_window=False) X_all_1 = subsampler.transform(X_all_0) q_1 = np.concatenate(X_all_1) eq(((n_samples / lag_time) * n_traj, n_features), q_1.shape)
def test_subsampler_lag2(): n_traj, n_samples, n_features = 3, 100, 7 lag_time = 2 X_all_0 = [ random.normal(size=(n_samples, n_features)) for i in range(n_traj) ] q_0 = np.concatenate(X_all_0) subsampler = Subsampler(lag_time=lag_time) X_all_1 = subsampler.transform(X_all_0) q_1 = np.concatenate(X_all_1) eq(((n_samples - lag_time + 2) * n_traj, n_features), q_1.shape) subsampler = Subsampler(lag_time=lag_time, sliding_window=False) X_all_1 = subsampler.transform(X_all_0) q_1 = np.concatenate(X_all_1) eq(((n_samples / lag_time) * n_traj, n_features), q_1.shape)
def test_subsampler_lag1(): n_traj, n_samples, n_features = 3, 100, 7 lag_time = 1 X_all_0 = [random.normal(size=(n_samples, n_features)) for i in range(n_traj)] q_0 = np.concatenate(X_all_0) subsampler = Subsampler(lag_time=lag_time) X_all_1 = subsampler.transform(X_all_0) q_1 = np.concatenate(X_all_1) eq(q_0.shape, q_1.shape) eq(q_0.mean(0), q_1.mean(0)) eq(q_0.std(0), q_1.std(0)) subsampler = Subsampler(lag_time=lag_time, sliding_window=False) X_all_1 = subsampler.transform(X_all_0) q_1 = np.concatenate(X_all_1) eq(q_0.shape, q_1.shape) eq(q_0.mean(0), q_1.mean(0)) eq(q_0.std(0), q_1.std(0))
def test_subsampler_lag1(): n_traj, n_samples, n_features = 3, 100, 7 lag_time = 1 X_all_0 = [ random.normal(size=(n_samples, n_features)) for i in range(n_traj) ] q_0 = np.concatenate(X_all_0) subsampler = Subsampler(lag_time=lag_time) X_all_1 = subsampler.transform(X_all_0) q_1 = np.concatenate(X_all_1) eq(q_0.shape, q_1.shape) eq(q_0.mean(0), q_1.mean(0)) eq(q_0.std(0), q_1.std(0)) subsampler = Subsampler(lag_time=lag_time, sliding_window=False) X_all_1 = subsampler.transform(X_all_0) q_1 = np.concatenate(X_all_1) eq(q_0.shape, q_1.shape) eq(q_0.mean(0), q_1.mean(0)) eq(q_0.std(0), q_1.std(0))