def __init__(self, min_coords, max_coords=None, force_valid=False): if isinstance(min_coords, Dlt): self.dlt_tfm = min_coords else: if max_coords is None: max_coords = min_coords min_coords = np.zeros(dim) self.dlt_tfm = Dlt(offset=(max_coords + min_coords) / 2, scale=(max_coords - min_coords) / 2) if force_valid: min_coords = self.min_coords max_coords = self.max_coords self.dlt_tfm = Dlt(offset=(max_coords + min_coords) / 2, scale=(max_coords - min_coords) / 2)
def mean(self): '''Returns the mean vector.''' if self._mean is None: self._mean = np.zeros( self.ndim) if abs(self.m0) < EPSILON else self.m1 / self.m0 return self._mean
def __init__(self, offset=np.zeros(2), scale=1, angle=0, on=False): self.offset = offset self.scale = scale self.angle = angle self.on = on
def __init__(self, offset=np.zeros(2), linear=Lin2d()): self.offset = offset self.linear = linear
def __init__(self, offset=np.zeros(3), scale=np.ones(3), check_shapes=True): self.offset = offset self.scale = scale if check_shapes: _ = self.dim # just to check the shapes
def __init__(self, weight=np.identity(3), bias=np.zeros(3), check_shapes=True): self.weight = weight self.bias = bias if check_shapes: _ = self.dim # just to check shapes
def __init__(self, offset=np.zeros(2), scale=1): self.offset = offset self.scale = scale
def __init__(self, offset=np.zeros(2), unitary=np.identity(2)): self.offset = offset self.unitary = unitary