Example #1
0
def create_mtcnn_net(p_model_path=None,
                     r_model_path=None,
                     o_model_path=None,
                     use_cuda=True):

    pnet, rnet, onet = None, None, None

    if p_model_path is not None:
        pnet = PNet(use_cuda=use_cuda)
        if (use_cuda):
            print('p_model_path:{0}'.format(p_model_path))
            pnet.load_state_dict(torch.load(p_model_path))
            pnet.cuda()
        else:
            # forcing all GPU tensors to be in CPU while loading
            pnet.load_state_dict(
                torch.load(p_model_path,
                           map_location=lambda storage, loc: storage))
        pnet.eval()

    if r_model_path is not None:
        rnet = RNet(use_cuda=use_cuda)
        if (use_cuda):
            print('r_model_path:{0}'.format(r_model_path))
            rnet.load_state_dict(torch.load(r_model_path))
            rnet.cuda()
        else:
            rnet.load_state_dict(
                torch.load(r_model_path,
                           map_location=lambda storage, loc: storage))
        rnet.eval()

    if o_model_path is not None:
        onet = ONet(use_cuda=use_cuda)
        if (use_cuda):
            print('o_model_path:{0}'.format(o_model_path))
            onet.load_state_dict(torch.load(o_model_path))
            onet.cuda()
        else:
            onet.load_state_dict(
                torch.load(o_model_path,
                           map_location=lambda storage, loc: storage))
        onet.eval()

    return pnet, rnet, onet
    def create_mtcnn_net(self):
        ''' Create the mtcnn model '''
        pnet, rnet, onet = None, None, None

        if len(self.args.pnet_file) > 0:
            pnet = PNet(use_cuda=self.args.use_cuda)
            if self.args.use_cuda:
                pnet.load_state_dict(torch.load(self.args.pnet_file))
                pnet = torch.nn.DataParallel(
                    pnet, device_ids=self.args.gpu_ids).cuda()
            else:
                pnet.load_state_dict(torch.load(self.args.pnet_file,\
                                                map_location=lambda storage, loc: storage))
            pnet.eval()

        if len(self.args.rnet_file) > 0:
            rnet = RNet(use_cuda=self.args.use_cuda)
            if self.args.use_cuda:
                rnet.load_state_dict(torch.load(self.args.rnet_file))
                rnet = torch.nn.DataParallel(
                    rnet, device_ids=self.args.gpu_ids).cuda()
            else:
                rnet.load_state_dict(torch.load(self.args.rnet_file,\
                                                map_location=lambda storage, loc: storage))
            rnet.eval()

        if len(self.args.onet_file) > 0:
            onet = ONet(use_cuda=self.args.use_cuda)
            if self.args.use_cuda:
                onet.load_state_dict(torch.load(self.args.onet_file))
                onet = torch.nn.DataParallel(
                    onet, device_ids=self.args.gpu_ids).cuda()
            else:
                onet.load_state_dict(torch.load(self.args.onet_file, \
                                                map_location=lambda storage, loc: storage))
            onet.eval()

        self.pnet_detector = pnet
        self.rnet_detector = rnet
        self.onet_detector = onet
Example #3
0
def train_onet(model_store_path, end_epoch,imdb,
              batch_size,frequent=50,base_lr=0.01,use_cuda=True):

    if not os.path.exists(model_store_path):
        os.makedirs(model_store_path)

    lossfn = LossFn()
    net = ONet(is_train=True)
    net.train()
    print(use_cuda)
    if use_cuda:
        net.cuda()

    optimizer = torch.optim.Adam(net.parameters(), lr=base_lr)

    train_data=TrainImageReader(imdb,48,batch_size,shuffle=True)


    for cur_epoch in range(1,end_epoch+1):

        train_data.reset()

        for batch_idx,(image,(gt_label,gt_bbox,gt_landmark))in enumerate(train_data):
            # print("batch id {0}".format(batch_idx))
            im_tensor = [ image_tools.convert_image_to_tensor(image[i,:,:,:]) for i in range(image.shape[0]) ]
            im_tensor = torch.stack(im_tensor)

            im_tensor = Variable(im_tensor)
            gt_label = Variable(torch.from_numpy(gt_label).float())

            gt_bbox = Variable(torch.from_numpy(gt_bbox).float())
            gt_landmark = Variable(torch.from_numpy(gt_landmark).float())

            if use_cuda:
                im_tensor = im_tensor.cuda()
                gt_label = gt_label.cuda()
                gt_bbox = gt_bbox.cuda()
                gt_landmark = gt_landmark.cuda()

            cls_pred, box_offset_pred, landmark_offset_pred = net(im_tensor)

            # all_loss, cls_loss, offset_loss = lossfn.loss(gt_label=label_y,gt_offset=bbox_y, pred_label=cls_pred, pred_offset=box_offset_pred)

            cls_loss = lossfn.cls_loss(gt_label,cls_pred)
            box_offset_loss = lossfn.box_loss(gt_label,gt_bbox,box_offset_pred)
            landmark_loss = lossfn.landmark_loss(gt_label,gt_landmark,landmark_offset_pred)

            all_loss = cls_loss*0.8+box_offset_loss*0.6+landmark_loss*1.5

            if batch_idx%frequent==0:
                accuracy=compute_accuracy(cls_pred,gt_label)

                show1 = accuracy.data.cpu().numpy()
                show2 = cls_loss.data.cpu().numpy()
                show3 = box_offset_loss.data.cpu().numpy()
                show4 = landmark_loss.data.cpu().numpy()
                show5 = all_loss.data.cpu().numpy()

                print("%s : Epoch: %d, Step: %d, accuracy: %s, det loss: %s, bbox loss: %s, landmark loss: %s, all_loss: %s, lr:%s "%(datetime.datetime.now(),cur_epoch,batch_idx, show1,show2,show3,show4,show5,base_lr))

            optimizer.zero_grad()
            all_loss.backward()
            optimizer.step()

        torch.save(net.state_dict(), os.path.join(model_store_path,"onet_epoch_%d.pt" % cur_epoch))
        torch.save(net, os.path.join(model_store_path,"onet_epoch_model_%d.pkl" % cur_epoch))