def setUp(self): self.R = np.asarray([[1.0, 0.4, -0.4], [0.4, 1.0, 0.6], [-0.4, 0.6, 1.0]]) self.mu = [100.0] * 3 self.sigma = [10.0] * 3 self.cov = gen.cor2cov(self.R, self.sigma) self.maze = gen.make_multimaze(4, 4, 3) self.goals = gen.maze_goal_states(self.maze, 3, self.mu, self.cov)
def setUp(self): self.R = np.asarray([[ 1.0, 0.4, -0.4], [ 0.4, 1.0, 0.6], [-0.4, 0.6, 1.0]]) self.mu = [100.0] * 3 self.sigma = [10.0] * 3 self.cov = gen.cor2cov(self.R, self.sigma) self.maze = gen.make_multimaze(4, 4, 3) self.goals = gen.maze_goal_states(self.maze, 3, self.mu, self.cov)
def test_invalidR(self): numStates = 1000 numActions = 10 mu = [0.0] * 3 sigma = [1.0] * 3 R = np.asarray([[1.0, -0.7, 0.8], [-0.7, 1.0, 0.9], [0.8, 0.9, 1.0]]) cov = gen.cor2cov(R, sigma) self.assertRaises(sla.LinAlgError, gen.mvnrewards, numStates, numActions, mu, R)
def test_rewards2(self): numStates = 5000 numActions = 20 mu = [10, 10, 10] sigma = [1, 1, 1] R = np.asarray([[1.0, -0.7, -0.5], [-0.7, 1.0, 0.8], [-0.5, 0.8, 1.0]]) cov = gen.cor2cov(R, sigma) D = gen.mvnrewards(numStates, numActions, mu, cov) self.checkCorrelations(R, D)
def test_rewards1(self): numStates = 1000 numActions = 5 mu = [20, 0, 50] sigma = [5, 5, 10] R = np.asarray([[1.0, 0.4, -0.4], [0.4, 1.0, 0.6], [-0.4, 0.6, 1.0]]) cov = gen.cor2cov(R, sigma) D = gen.mvnrewards(numStates, numActions, mu, cov) self.checkCorrelations(R, D)
def test_invalidR(self): numStates = 1000 numActions = 10 mu = [0.0] * 3 sigma = [1.0] * 3 R = np.asarray([[ 1.0, -0.7, 0.8], [-0.7, 1.0, 0.9], [ 0.8, 0.9, 1.0]]) cov = gen.cor2cov(R, sigma) self.assertRaises(sla.LinAlgError, gen.mvnrewards, numStates, numActions, mu, R)
def test_rewards3(self): numStates = 200 numActions = 8 mu = [0, -10, 30, 0] sigma = [5, 0.5, 10, 2.0] R = np.asarray([[1.0, 0.2, -0.5, 0.0], [0.2, 1.0, 0.4, 0.0], [-0.5, 0.4, 1.0, 0.6], [0.0, 0.0, 0.6, 1.0]]) cov = gen.cor2cov(R, sigma) D = gen.mvnrewards(numStates, numActions, mu, cov) self.checkCorrelations(R, D)
def test_rewards2(self): numStates = 5000 numActions = 20 mu = [10, 10, 10] sigma = [1, 1, 1] R = np.asarray([[ 1.0, -0.7, -0.5], [-0.7, 1.0, 0.8], [-0.5, 0.8, 1.0]]) cov = gen.cor2cov(R, sigma) D = gen.mvnrewards(numStates, numActions, mu, cov) self.checkCorrelations(R, D)
def test_rewards1(self): numStates = 1000 numActions = 5 mu = [20, 0, 50] sigma = [5, 5, 10] R = np.asarray([[ 1.0, 0.4, -0.4], [ 0.4, 1.0, 0.6], [-0.4, 0.6, 1.0]]) cov = gen.cor2cov(R, sigma) D = gen.mvnrewards(numStates, numActions, mu, cov) self.checkCorrelations(R, D)
def test_rewards3(self): numStates = 200 numActions = 8 mu = [0, -10, 30, 0] sigma = [5, 0.5, 10, 2.0] R = np.asarray([[ 1.0, 0.2, -0.5, 0.0], [ 0.2, 1.0, 0.4, 0.0], [-0.5, 0.4, 1.0, 0.6], [ 0.0, 0.0, 0.6, 1.0]]) cov = gen.cor2cov(R, sigma) D = gen.mvnrewards(numStates, numActions, mu, cov) self.checkCorrelations(R, D)