Example #1
0
def get_exp_core(varlev, sandbox=True, partial=False,
                 selected_basic_objs=SELECTED_BASIC_OBJS):
    meta, _, meta_cars = get_meta(varlev=varlev)
    cars = np.unique(meta_cars['obj'])
    combs = [(o1, o2) for o1 in selected_basic_objs for o2 in cars] + \
            [e for e in itertools.combinations(cars, 2)]
    urls = [get_url(e['obj'], e['id'], varlev) for e in meta]
    response_images = [{
        'urls': [get_url_labeled_resp_img(o1, varlev),
                 get_url_labeled_resp_img(o2, varlev)],
        'meta': [{'obj': o} for o in [o1, o2]],
        'labels': [o1, o2]
        } for o1, o2 in combs]

    html_data = {
        'response_images': response_images,
        'combs': combs,
        'num_trials': 125 * 2,
        'meta_field': 'obj',
        'meta': meta,
        'urls': urls,
        'shuffle_test': True,
    }

    exp = MatchToSampleFromDLDataExperiment(
            htmlsrc='web/cars_subord.html',
            htmldst='cars_subord_n%05d.html',
            sandbox=sandbox,
            title='Object recognition --- report what you see',
            reward=0.15,
            duration=1600,
            keywords=['neuroscience', 'psychology', 'experiment', 'object recognition'],  # noqa
            description="***You may complete as many HITs in this group as you want*** Complete a visual object recognition task where you report the identity of objects you see. We expect this HIT to take about 5 minutes or less, though you must finish in under 25 minutes.  By completing this HIT, you understand that you are participating in an experiment for the Massachusetts Institute of Technology (MIT) Department of Brain and Cognitive Sciences. You may quit at any time, and you will remain anonymous. Contact the requester with questions or concerns about this experiment.",  # noqa
            comment="objectome_cars_subord.  30 cars and 30 non-cars",  # noqa
            collection_name='objectome_cars_subord_v0v3',
            max_assignments=1,
            bucket_name='objectome_cars_subord_v0v3',
            trials_per_hit=ACTUAL_TRIALS_PER_HIT + 16,  # 100 + 4x4 repeats
            tmpdir='tmp',
            html_data=html_data,
            frame_height_pix=1200,
            othersrc=['../../mturkutils/lib/dltk.js', '../../mturkutils/lib/dltkexpr.js', '../../mturkutils/lib/dltkrsvp.js'],   # noqa
            set_destination=True,
            )

    if partial:
        return exp
    # -- create trials
    exp.createTrials(sampling='with-replacement', verbose=1)
    return exp
Example #2
0
def get_exp(sandbox=True, dummy_upload=True):

    dataset = lcs.LandoltCs()
    meta = dataset.meta
    preproc = dict(crop=None,
                   crop_rand=None,
                   dtype='float32',
                   mask=None,
                   mode='L',
                   normalize=False,
                   resize_to=(256, 256),
                   seed=0)
    img_urls = dataset.publish_images(range(len(dataset.meta)),
                                      preproc,
                                      'acuity_tasks',
                                      dummy_upload=dummy_upload)
    response_im_inds = [29, 24, 19, 34, 14, 39, 4, 9]
    response_urls = []
    response_metas = []
    response_labels = []
    for ind in response_im_inds:
        response_urls.append(img_urls[ind])
        response_metas.append({k: meta[ind][k] for k in meta.dtype.names})
        response_labels.append(None)
    response_images = [{
        'urls': response_urls,
        'meta': response_metas,
        'labels': response_labels
    }]

    combs = [[m['rotation'] for m in response_images[0]['meta']]]
    additionalrules = [{
        'old': 'LEARNINGPERIODNUMBER',
        'new': str(10)
    }, {
        'old': 'OBJTYPE',
        'new': 'Landolt C'
    }]
    html_data = {
        'response_images': response_images,
        'combs': combs,
        'num_trials': 184,
        'meta_field': 'rotation',
        'meta': meta,
        'urls': img_urls
    }
    exp = MatchToSampleFromDLDataExperiment(
        htmlsrc='landolt_c_task.html',
        htmldst='landolt_c_n%05d.html',
        sandbox=sandbox,
        title='Object recognition --- report what you see',
        reward=0.35,
        duration=1500,
        keywords=[
            'neuroscience', 'psychology', 'experiment', 'object recognition'
        ],  # noqa
        description=
        "***You may complete as many HITs in this group as you want*** Complete a visual object recognition task where you report the identity of objects you see. We expect this HIT to take about 10 minutes or less, though you must finish in under 25 minutes.  By completing this HIT, you understand that you are participating in an experiment for the Massachusetts Institute of Technology (MIT) Department of Brain and Cognitive Sciences. You may quit at any time, and you will remain anonymous. Contact the requester with questions or concerns about this experiment.",  # noqa
        comment="landolt c acuity",  # noqa
        collection_name='landolt_c',
        max_assignments=20,
        bucket_name='landolt_c',
        trials_per_hit=184,  # 150 + 8x4 repeats
        html_data=html_data,
        frame_height_pix=1200,
        othersrc=[
            '../../lib/dltk.js', '../../lib/dltkexpr.js',
            '../../lib/dltkrsvp.js'
        ],
        additionalrules=additionalrules)

    # -- create trials
    exp.createTrials(sampling='with-replacement', verbose=1)
    #n_total_trials = len(exp._trials['imgFiles'])
    #assert n_total_trials == 40, n_total_trials

    # -- in each HIT, the followings will be repeated 4 times to
    # estimate "quality" of data

    #ind_repeats = [3440, 3282, 3321, 3802, 5000, 3202, 4041, 4200] * REPEATS_PER_QE_IMG
    #rng = np.random.RandomState(0)
    #rng.shuffle(ind_repeats)
    # trials_qe = {e: [copy.deepcopy(exp._trials[e][r]) for r in ind_repeats]
    #         for e in exp._trials}
    # offsets = np.arange(
    #             ACTUAL_TRIALS_PER_HIT - 3, -1,
    #             -ACTUAL_TRIALS_PER_HIT / float(len(ind_repeats))
    #         ).round().astype('int')
    #
    # n_hits_floor = n_total_trials / ACTUAL_TRIALS_PER_HIT
    # n_applied_hits = 0
    # for i_trial_begin in xrange((n_hits_floor - 1) * ACTUAL_TRIALS_PER_HIT,
    #         -1, -ACTUAL_TRIALS_PER_HIT):
    #     for k in trials_qe:
    #         for i, offset in enumerate(offsets):
    #             exp._trials[k].insert(i_trial_begin + offset, trials_qe[k][i])
    #     n_applied_hits += 1
    #
    # print '** n_applied_hits =', n_applied_hits
    # print '** len for each in _trials =', \
    #         {e: len(exp._trials[e]) for e in exp._trials}
    #
    # # -- sanity check
    # assert 38 == n_applied_hits, n_applied_hits
    # assert len(exp._trials['imgFiles']) == 6976, len(exp._trials['imgFiles'])
    # s_ref_labels = set([tuple(e) for e in trials_qe['labels']])
    # print(s_ref_labels)
    # offsets2 = np.arange(8 * 4)[::-1] + offsets
    #
    # ibie = zip(range(0, 6976, trials_per_hit), range(trials_per_hit, 6976 + trials_per_hit, trials_per_hit))
    # assert all([set([tuple(e) for e in
    #     np.array(exp._trials['labels'][ib:ie])[offsets2]]) == s_ref_labels
    #     for ib, ie in ibie[:-1]])
    # print '** Finished creating trials.'
    return exp, html_data
Example #3
0
def get_exp(sandbox=True, selected_basic_objs=SELECTED_BASIC_OBJS,
            debug=False):
    meta, _, meta_cars = get_meta()
    cars = np.unique(meta_cars['obj'])
    combs = [(o1, o2) for o1 in selected_basic_objs for o2 in cars] + \
            [e for e in itertools.combinations(cars, 2)]
    urls = [get_url(e['obj'], e['id']) for e in meta]
    response_images = [{
        'urls': [get_url_labeled_resp_img(o1), get_url_labeled_resp_img(o2)],
        'meta': [{'obj': o} for o in [o1, o2]],
        'labels': [o1, o2]
        } for o1, o2 in combs]

    html_data = {
        'response_images': response_images,
        'combs': combs,
        'num_trials': 125 * 2,
        'meta_field': 'obj',
        'meta': meta,
        'urls': urls,
        'shuffle_test': True,
    }

    exp = MatchToSampleFromDLDataExperiment(
            htmlsrc='web/cars_subord.html',
            htmldst='cars_subord_n%05d.html',
            sandbox=sandbox,
            title='Object recognition --- report what you see',
            reward=0.15,
            duration=1600,
            keywords=['neuroscience', 'psychology', 'experiment', 'object recognition'],  # noqa
            description="***You may complete as many HITs in this group as you want*** Complete a visual object recognition task where you report the identity of objects you see. We expect this HIT to take about 5 minutes or less, though you must finish in under 25 minutes.  By completing this HIT, you understand that you are participating in an experiment for the Massachusetts Institute of Technology (MIT) Department of Brain and Cognitive Sciences. You may quit at any time, and you will remain anonymous. Contact the requester with questions or concerns about this experiment.",  # noqa
            comment="objectome_cars_subord.  30 cars and 30 non-cars",  # noqa
            collection_name='objectome_cars_subord_v3',
            max_assignments=1,
            bucket_name='objectome_cars_subord_v3',
            trials_per_hit=ACTUAL_TRIALS_PER_HIT + 16,  # 100 + 4x4 repeats
            tmpdir='tmp',
            html_data=html_data,
            frame_height_pix=1200,
            othersrc=['../../mturkutils/lib/dltk.js', '../../mturkutils/lib/dltkexpr.js', '../../mturkutils/lib/dltkrsvp.js'],   # noqa
            set_destination=True,
            )

    # -- create trials
    exp.createTrials(sampling='with-replacement', verbose=1)
    if debug:
        return exp

    # repeat last 50 presentations twice to make the entire trials
    # well aligned as multiples of 100
    exp._trials['imgFiles'].extend(exp._trials['imgFiles'][-50:])
    exp._trials['imgData'].extend(exp._trials['imgData'][-50:])
    exp._trials['labels'].extend(exp._trials['labels'][-50:])

    n_total_trials = len(exp._trials['imgFiles'])
    assert n_total_trials == (30 * 29 / 2 + 30 * 30) * 250 + 50

    # -- in each HIT, the followings will be repeated 4 times to
    # estimate "quality" of data
    #
    # car:      4 - car MB27534* v car MB27803
    # car:     12 - train MB31405 v car MB27577*
    # non-car: 21 - truck* v car MB29874
    # non-car: 24 - book v MB28307*
    ind_repeats = [4, 12, 21, 24] * REPEATS_PER_QE_IMG
    rng = np.random.RandomState(0)
    rng.shuffle(ind_repeats)
    trials_qe = {e: [copy.deepcopy(exp._trials[e][r]) for r in ind_repeats]
                 for e in exp._trials}

    # -- flip answer choices of some repeated images
    n_qe = len(trials_qe['imgFiles'])
    print '** n_qe =', n_qe
    # if True, flip
    flips = [True] * (n_qe / 2) + [False] * (n_qe - n_qe / 2)
    assert len(flips) == n_qe
    rng.shuffle(flips)
    assert len(trials_qe.keys()) == 4

    for i, flip in enumerate(flips):
        if not flip:
            continue
        trials_qe['imgFiles'][i][1].reverse()
        trials_qe['labels'][i].reverse()
        trials_qe['imgData'][i]['Test'].reverse()

    # -- actual application
    offsets = np.arange(
        ACTUAL_TRIALS_PER_HIT - 3, -1,
        -ACTUAL_TRIALS_PER_HIT / float(len(ind_repeats))
    ).round().astype('int')
    assert len(offsets) == len(offsets)

    n_hits_floor = n_total_trials / ACTUAL_TRIALS_PER_HIT
    n_applied_hits = 0
    for i_trial_begin in xrange((n_hits_floor - 1) * ACTUAL_TRIALS_PER_HIT,
                                -1, -ACTUAL_TRIALS_PER_HIT):
        for k in trials_qe:
            for i, offset in enumerate(offsets):
                exp._trials[k].insert(i_trial_begin + offset, trials_qe[k][i])
                # exp._trials[k].insert(i_trial_begin + offset, 'test')
        n_applied_hits += 1

    print '** n_applied_hits =', n_applied_hits
    print '** len for each in _trials =', \
        {e: len(exp._trials[e]) for e in exp._trials}

    # -- sanity check
    assert 3338 == n_applied_hits
    assert len(exp._trials['imgFiles']) == 3338 * (100 + 16)
    s_ref_labels = [tuple(e) for e in trials_qe['labels']]
    print '**', s_ref_labels
    offsets2 = np.arange(16)[::-1] + offsets
    ibie = zip(range(0, 3338 * 116, 116), range(3339 * 116, 116))
    assert all(
        [[(e1, e2) for e1, e2 in
         np.array(exp._trials['labels'][ib:ie])[offsets2]] == s_ref_labels
         for ib, ie in ibie])

    # -- drop unneeded, potentially abusable stuffs
    del exp._trials['imgData']
    del exp._trials['meta_field']
    print '** Finished creating trials.'

    return exp, html_data
def get_exp(category, sandbox=True, dummy_upload=True):

    dataset = hvm.HvMWithDiscfade()
    meta = dataset.meta
    inds = (meta['category'] == category).nonzero()[0]
    meta = meta[inds]
    objs = np.unique(meta['obj'])
    combs = [objs]
    preproc = None
    image_bucket_name = 'hvm_timing'
    urls = dataset.publish_images(inds, preproc,
                                  image_bucket_name,
                                  dummy_upload=dummy_upload)


    base_url = 'https://s3.amazonaws.com/hvm_timing/'
    obj_resp_ids = [meta[meta['obj'] == o]['id'][0] for o in objs]
    response_images = [{
        'urls': [base_url + obj_id + '.png' for obj_id in obj_resp_ids],
        'meta': [{'obj': obj, 'category': category} for obj in objs],
        'labels': objs}]

    mult = 2
    html_data = {
            'response_images': response_images,
            'combs': combs,
            'num_trials': 90 * 8 * mult,
            'meta_field': 'obj',
            'meta': tb.tab_rowstack([meta] * mult),
            'urls': urls * mult,
            'shuffle_test': False,
    }

    additionalrules = [{'old': 'LEARNINGPERIODNUMBER',
                        'new':  str(LEARNING_PERIOD)},
                       {'old': 'OBJTYPE',
                        'new': category}]

    trials_per_hit = ACTUAL_TRIALS_PER_HIT + 32 + 16
    exp = MatchToSampleFromDLDataExperiment(
            htmlsrc='hvm_subordinate.html',
            htmldst='hvm_subordinate_' + category + '_n%05d.html',
            tmpdir='tmp_subordinate_%s' % category,
            sandbox=sandbox,
            title='Object recognition --- report what you see',
            reward=0.35,
            duration=1500,
            keywords=['neuroscience', 'psychology', 'experiment', 'object recognition'],  # noqa
            description="***You may complete as many HITs in this group as you want*** Complete a visual object recognition task where you report the identity of objects you see. We expect this HIT to take about 10 minutes or less, though you must finish in under 25 minutes.  By completing this HIT, you understand that you are participating in an experiment for the Massachusetts Institute of Technology (MIT) Department of Brain and Cognitive Sciences. You may quit at any time, and you will remain anonymous. Contact the requester with questions or concerns about this experiment.",  # noqa
            comment="hvm subordinate identification",  # noqa
            collection_name = 'hvm_subordinate_identification_%s' % category,
            max_assignments=1,
            bucket_name='hvm_subordinate_identification_test',
            trials_per_hit=trials_per_hit,  # 144 + 8x4 repeats + 16 training
            html_data=html_data,
            frame_height_pix=1200,
            othersrc = ['objnames.js', '../../lib/dltk.js', '../../lib/dltkexpr.js', '../../lib/dltkrsvp.js'],
            additionalrules=additionalrules,
            log_prefix='subordinate_' + category + '_'
            )

    # -- create trials
    exp.createTrials(sampling='without-replacement', verbose=1)
    n_total_trials = len(exp._trials['imgFiles'])
    assert n_total_trials == 90 * 8 * mult, n_total_trials

    # -- in each HIT, the followings will be repeated 4 times to
    # estimate "quality" of data

    ind_repeats = repeat_inds[category] * REPEATS_PER_QE_IMG
    rng = np.random.RandomState(0)
    rng.shuffle(ind_repeats)
    trials_qe = {e: [copy.deepcopy(exp._trials[e][r]) for r in ind_repeats]
            for e in exp._trials}

    ind_learn = practice_inds[category]
    goodids = [meta[i]['id'] for i in ind_learn]

    trials_lrn = {}
    for e in exp._trials:
        trials_lrn[e] = []
        got = []
        for _ind, r in enumerate(exp._trials[e]):
            if exp._trials['imgData'][_ind]['Sample']['id'] in goodids and exp._trials['imgData'][_ind]['Sample']['id'] not in got :
                trials_lrn[e].append(copy.deepcopy(r))
                got.append(exp._trials['imgData'][_ind]['Sample']['id'])
    assert len(trials_lrn['imgData']) == len(goodids), len(trials_lrn['imgData'])

    offsets = np.arange(ACTUAL_TRIALS_PER_HIT - 3, -1, -ACTUAL_TRIALS_PER_HIT / float(len(ind_repeats))
            ).round().astype('int')

    n_hits_floor = n_total_trials / ACTUAL_TRIALS_PER_HIT
    n_applied_hits = 0
    for i_trial_begin in xrange((n_hits_floor - 1) * ACTUAL_TRIALS_PER_HIT,
            -1, -ACTUAL_TRIALS_PER_HIT):
        for k in trials_qe:
            for i, offset in enumerate(offsets):
                exp._trials[k].insert(i_trial_begin + offset, trials_qe[k][i])
        n_applied_hits += 1

    for j in range(n_applied_hits):
        for k in trials_lrn:
            for i in range(len(ind_learn)):
                exp._trials[k].insert(trials_per_hit * j, trials_lrn[k][i])

    #shuffle test on a per-hit basis
    for j in range(n_applied_hits):
        rng = np.random.RandomState(seed=j)
        perm = rng.permutation(8)
        for i in range(trials_per_hit * j, min(trials_per_hit * (j+1), len(exp._trials['imgFiles']))):
            f = copy.deepcopy(exp._trials['imgFiles'][i])
            t = copy.deepcopy(exp._trials['imgData'][i])
            f[1] = [f[1][_j] for _j in perm]
            exp._trials['imgFiles'][i] = f
            t['Test'] = [t['Test'][_j] for _j in perm]
            exp._trials['imgData'][i] = t
            l = copy.deepcopy(exp._trials['labels'][i])
            exp._trials['labels'][i] = [l[_j] for _j in perm]


    print '** n_applied_hits =', n_applied_hits
    print '** len for each in _trials =', \
            {e: len(exp._trials[e]) for e in exp._trials}

    # -- sanity check
    assert n_hits_floor == n_applied_hits == mult * 5, (n_hits_floor, n_applied_hits)
    assert len(exp._trials['imgFiles']) == mult * (720 + 5 * (32 + 16)),  len(exp._trials['imgFiles'])
    """
    s_ref_labels = set([tuple(e) for e in trials_qe['labels']])
    print(s_ref_labels)
    offsets2 = np.arange(8 * 4)[::-1] + offsets

    ibie = zip(range(0, 720 + 4 * 32, trials_per_hit), range(trials_per_hit, 720 + 4 * 32 + trials_per_hit, trials_per_hit))
    assert all([set([tuple(e) for e in
        np.array(exp._trials['labels'][ib:ie])[offsets2]]) == s_ref_labels
        for ib, ie in ibie[:-1]])
    print '** Finished creating trials.'
    """

    return exp, html_data
Example #5
0
def get_exp(category, sandbox=True, dummy_upload=True):

    dataset = hvm.HvMWithDiscfade()
    meta = dataset.meta
    inds = (meta['category'] == category).nonzero()[0]
    meta = meta[inds]
    objs = np.unique(meta['obj'])
    combs = [objs]
    preproc = None
    image_bucket_name = 'hvm_timing'
    urls = dataset.publish_images(inds,
                                  preproc,
                                  image_bucket_name,
                                  dummy_upload=dummy_upload)

    base_url = 'https://s3.amazonaws.com/hvm_timing/'
    obj_resp_ids = [meta[meta['obj'] == o]['id'][0] for o in objs]
    response_images = [{
        'urls': [base_url + obj_id + '.png' for obj_id in obj_resp_ids],
        'meta': [{
            'obj': obj,
            'category': category
        } for obj in objs],
        'labels':
        objs
    }]

    mult = 2
    html_data = {
        'response_images': response_images,
        'combs': combs,
        'num_trials': 90 * 8 * mult,
        'meta_field': 'obj',
        'meta': tb.tab_rowstack([meta] * mult),
        'urls': urls * mult,
        'shuffle_test': False,
    }

    additionalrules = [{
        'old': 'LEARNINGPERIODNUMBER',
        'new': str(LEARNING_PERIOD)
    }, {
        'old': 'OBJTYPE',
        'new': category
    }]

    trials_per_hit = ACTUAL_TRIALS_PER_HIT + 32 + 16
    exp = MatchToSampleFromDLDataExperiment(
        htmlsrc='hvm_subordinate.html',
        htmldst='hvm_subordinate_' + category + '_n%05d.html',
        tmpdir='tmp_subordinate_%s' % category,
        sandbox=sandbox,
        title='Object recognition --- report what you see',
        reward=0.35,
        duration=1500,
        keywords=[
            'neuroscience', 'psychology', 'experiment', 'object recognition'
        ],  # noqa
        description=
        "***You may complete as many HITs in this group as you want*** Complete a visual object recognition task where you report the identity of objects you see. We expect this HIT to take about 10 minutes or less, though you must finish in under 25 minutes.  By completing this HIT, you understand that you are participating in an experiment for the Massachusetts Institute of Technology (MIT) Department of Brain and Cognitive Sciences. You may quit at any time, and you will remain anonymous. Contact the requester with questions or concerns about this experiment.",  # noqa
        comment="hvm subordinate identification",  # noqa
        collection_name='hvm_subordinate_identification_%s' % category,
        max_assignments=1,
        bucket_name='hvm_subordinate_identification_test',
        trials_per_hit=trials_per_hit,  # 144 + 8x4 repeats + 16 training
        html_data=html_data,
        frame_height_pix=1200,
        othersrc=[
            'objnames.js', '../../lib/dltk.js', '../../lib/dltkexpr.js',
            '../../lib/dltkrsvp.js'
        ],
        additionalrules=additionalrules,
        log_prefix='subordinate_' + category + '_')

    # -- create trials
    exp.createTrials(sampling='without-replacement', verbose=1)
    n_total_trials = len(exp._trials['imgFiles'])
    assert n_total_trials == 90 * 8 * mult, n_total_trials

    # -- in each HIT, the followings will be repeated 4 times to
    # estimate "quality" of data

    ind_repeats = repeat_inds[category] * REPEATS_PER_QE_IMG
    rng = np.random.RandomState(0)
    rng.shuffle(ind_repeats)
    trials_qe = {
        e: [copy.deepcopy(exp._trials[e][r]) for r in ind_repeats]
        for e in exp._trials
    }

    ind_learn = practice_inds[category]
    goodids = [meta[i]['id'] for i in ind_learn]

    trials_lrn = {}
    for e in exp._trials:
        trials_lrn[e] = []
        got = []
        for _ind, r in enumerate(exp._trials[e]):
            if exp._trials['imgData'][_ind]['Sample'][
                    'id'] in goodids and exp._trials['imgData'][_ind][
                        'Sample']['id'] not in got:
                trials_lrn[e].append(copy.deepcopy(r))
                got.append(exp._trials['imgData'][_ind]['Sample']['id'])
    assert len(trials_lrn['imgData']) == len(goodids), len(
        trials_lrn['imgData'])

    offsets = np.arange(ACTUAL_TRIALS_PER_HIT - 3, -1, -ACTUAL_TRIALS_PER_HIT /
                        float(len(ind_repeats))).round().astype('int')

    n_hits_floor = n_total_trials / ACTUAL_TRIALS_PER_HIT
    n_applied_hits = 0
    for i_trial_begin in xrange((n_hits_floor - 1) * ACTUAL_TRIALS_PER_HIT, -1,
                                -ACTUAL_TRIALS_PER_HIT):
        for k in trials_qe:
            for i, offset in enumerate(offsets):
                exp._trials[k].insert(i_trial_begin + offset, trials_qe[k][i])
        n_applied_hits += 1

    for j in range(n_applied_hits):
        for k in trials_lrn:
            for i in range(len(ind_learn)):
                exp._trials[k].insert(trials_per_hit * j, trials_lrn[k][i])

    #shuffle test on a per-hit basis
    for j in range(n_applied_hits):
        rng = np.random.RandomState(seed=j)
        perm = rng.permutation(8)
        for i in range(
                trials_per_hit * j,
                min(trials_per_hit * (j + 1), len(exp._trials['imgFiles']))):
            f = copy.deepcopy(exp._trials['imgFiles'][i])
            t = copy.deepcopy(exp._trials['imgData'][i])
            f[1] = [f[1][_j] for _j in perm]
            exp._trials['imgFiles'][i] = f
            t['Test'] = [t['Test'][_j] for _j in perm]
            exp._trials['imgData'][i] = t
            l = copy.deepcopy(exp._trials['labels'][i])
            exp._trials['labels'][i] = [l[_j] for _j in perm]

    print '** n_applied_hits =', n_applied_hits
    print '** len for each in _trials =', \
            {e: len(exp._trials[e]) for e in exp._trials}

    # -- sanity check
    assert n_hits_floor == n_applied_hits == mult * 5, (n_hits_floor,
                                                        n_applied_hits)
    assert len(exp._trials['imgFiles']) == mult * (720 + 5 * (32 + 16)), len(
        exp._trials['imgFiles'])
    """
    s_ref_labels = set([tuple(e) for e in trials_qe['labels']])
    print(s_ref_labels)
    offsets2 = np.arange(8 * 4)[::-1] + offsets

    ibie = zip(range(0, 720 + 4 * 32, trials_per_hit), range(trials_per_hit, 720 + 4 * 32 + trials_per_hit, trials_per_hit))
    assert all([set([tuple(e) for e in
        np.array(exp._trials['labels'][ib:ie])[offsets2]]) == s_ref_labels
        for ib, ie in ibie[:-1]])
    print '** Finished creating trials.'
    """

    return exp, html_data
def get_exp(sandbox=True, debug=False, dummy_upload=True):
    dataset = hvm.HvMWithDiscfade()
    meta = dataset.meta
    combs = []
    response_images = []
    for category in np.unique(meta['category']):
        objs = np.unique(meta[meta['category']==category]['obj'])
        obj_combs= [e for e in itertools.combinations(objs, 2)]
        response_images.extend([{
        'urls': [get_url_labeled_resp_img(o1, dataset), get_url_labeled_resp_img(o2, dataset)],
        'meta': [{'obj': o, 'category': category} for o in [o1, o2]],
        'labels': [hvm.OBJECT_NAMES[o1], hvm.OBJECT_NAMES[o2]]
        } for o1, o2 in obj_combs])
        combs.extend(obj_combs)
    #urls = [get_url(e['obj'], e['id']) for e in meta]

    urls = dataset.publish_images(range(len(dataset.meta)), None, 'hvm_timing',
                                      dummy_upload=dummy_upload)

    with open(path.join(path.dirname(__file__), 'tutorial_html'), 'r') as tutorial_html_file:
        tutorial_html = tutorial_html_file.read()
    label_func = lambda x: hvm.OBJECT_NAMES[x['obj']]
    html_data = {
        'combs': combs,
        'response_images': response_images,
        'num_trials': 125 * 2,
        'meta_field': 'obj',
        'meta': meta,
        'urls': urls,
        'shuffle_test': True,
        'meta_query' : lambda x: x['var'] == 'V6',
        'label_func': label_func
    }

    additionalrules = [{'old': 'LEARNINGPERIODNUMBER',
                        'new':  str(10)},
                       {'old': 'OBJTYPE',
                        'new': 'Object Recognition'},
                       {'old': 'TUTORIAL_HTML',
                        'new': tutorial_html},
                       {'old': 'CATDICT',
                        'new': json.dumps(hvm.OBJECT_NAMES)},
                       {'old': 'METAFIELD',
                        'new': "'obj'"}]

    exp = MatchToSampleFromDLDataExperiment(
            htmlsrc='web/general_two_way.html',
            htmldst='hvm_subordinate_2way_n%05d.html',
            sandbox=sandbox,
            title='Object recognition --- report what you see. Up to 50 cent performance based bonus',
            reward=0.25,
            duration=1600,
            keywords=['neuroscience', 'psychology', 'experiment', 'object recognition'],  # noqa
            description="***You may complete as many HITs in this group as you want*** Complete a visual object recognition task where you report the identity of objects you see. We expect this HIT to take about 10 minutes or less, though you must finish in under 25 minutes.  By completing this HIT, you understand that you are participating in an experiment for the Massachusetts Institute of Technology (MIT) Department of Brain and Cognitive Sciences. You may quit at any time, and you will remain anonymous. Contact the requester with questions or concerns about this experiment.",  # noqa
            comment='hvm_subordinate_2ways',
            collection_name='hvm_subordinate_2ways',
            max_assignments=1,
            bucket_name='hvm_2ways',
            trials_per_hit=ACTUAL_TRIALS_PER_HIT + 24,  # 140 + 6x4 repeats
            html_data=html_data,
            tmpdir='tmp',
            frame_height_pix=1200,
            othersrc=['../../lib/dltk.js', '../../lib/dltkexpr.js', '../../lib/dltkrsvp.js'],
            additionalrules=additionalrules
            )

    # -- create trials
    exp.createTrials(sampling='with-replacement', verbose=1)
    n_total_trials = len(exp._trials['imgFiles'])
    assert n_total_trials == (8 * 7 / 2) * 250 * 8
    if debug:
        return exp, html_data

    # -- in each HIT, the followings will be repeated 4 times to
    # estimate "quality" of data
    ind_repeats = [0, 4, 47, 9, 17, 18] * REPEATS_PER_QE_IMG
    rng = np.random.RandomState(0)
    rng.shuffle(ind_repeats)
    trials_qe = {e: [copy.deepcopy(exp._trials[e][r]) for r in ind_repeats]
                 for e in exp._trials}

    # -- flip answer choices of some repeated images
    n_qe = len(trials_qe['labels'])
    # if True, flip
    flips = [True] * (n_qe / 2) + [False] * (n_qe - n_qe / 2)
    assert len(flips) == n_qe
    rng.shuffle(flips)
    assert len(trials_qe.keys()) == 4

    for i, flip in enumerate(flips):
        if not flip:
            continue
        trials_qe['imgFiles'][i][1].reverse()
        trials_qe['labels'][i].reverse()
        trials_qe['imgData'][i]['Test'].reverse()

    # -- actual application
    offsets = np.arange(
        ACTUAL_TRIALS_PER_HIT - 3, -1,
        -ACTUAL_TRIALS_PER_HIT / float(len(ind_repeats))
    ).round().astype('int')
    assert len(offsets) == len(offsets)

    n_hits_floor = n_total_trials / ACTUAL_TRIALS_PER_HIT
    n_applied_hits = 0
    for i_trial_begin in xrange((n_hits_floor - 1) * ACTUAL_TRIALS_PER_HIT,
                                -1, -ACTUAL_TRIALS_PER_HIT):
        for k in trials_qe:
            for i, offset in enumerate(offsets):
                exp._trials[k].insert(i_trial_begin + offset, trials_qe[k][i])
                # exp._trials[k].insert(i_trial_begin + offset, 'test')
        n_applied_hits += 1

    print '** n_applied_hits =', n_applied_hits
    print '** len for each in _trials =', \
        {e: len(exp._trials[e]) for e in exp._trials}

    # -- sanity check
    assert 400 == n_applied_hits, n_applied_hits
    assert len(exp._trials['imgFiles']) == 50 * 164 * 8
    s_ref_labels = [tuple(e) for e in trials_qe['labels']]
    offsets2 = np.arange(24)[::-1] + offsets
    ibie = zip(range(0, 50 * 8 * 164, 164), range(164, 50 * 8 * 164, 164))
    assert all(
        [[(e1, e2) for e1, e2 in
         np.array(exp._trials['labels'][ib:ie])[offsets2]] == s_ref_labels
         for ib, ie in ibie])

    # -- drop unneeded, potentially abusable stuffs
    #del exp._trials['imgData']
    print '** Finished creating trials.'

    return exp, html_data
Example #7
0
def get_exp(sandbox=True, debug=False, dummy_upload=True):
    dataset = hvm.HvMWithDiscfade()
    meta = dataset.meta
    response_images = []
    categories = np.unique(meta['category'])
    cat_combs = [e for e in itertools.combinations(categories, 2)]
    response_images.extend([{
        'urls': [get_url_labeled_resp_img(c1),
                 get_url_labeled_resp_img(c2)],
        'meta': [{
            'category': category
        } for category in [c1, c2]],
        'labels': [c1, c2]
    } for c1, c2 in cat_combs])
    combs = cat_combs

    urls = dataset.publish_images(range(len(dataset.meta)),
                                  None,
                                  'hvm_timing',
                                  dummy_upload=dummy_upload)

    with open(path.join(path.dirname(__file__), 'tutorial_html_basic'),
              'r') as tutorial_html_file:
        tutorial_html = tutorial_html_file.read()
    label_func = lambda x: hvm.OBJECT_NAMES[x['obj']]
    html_data = {
        'combs': combs,
        'response_images': response_images,
        'num_trials': 125 * 2,
        'meta_field': 'category',
        'meta': meta,
        'urls': urls,
        'shuffle_test': True,
        'meta_query': lambda x: x['var'] == 'V6',
        'label_func': label_func
    }
    cat_dict = {
        'Animals': 'Animal',
        'Boats': 'Boat',
        'Cars': 'Car',
        'Chairs': 'Chair',
        'Faces': 'Face',
        'Fruits': 'Fruit',
        'Planes': 'Plane',
        'Tables': 'Table'
    }

    additionalrules = [{
        'old': 'LEARNINGPERIODNUMBER',
        'new': str(10)
    }, {
        'old': 'OBJTYPE',
        'new': 'Object Recognition'
    }, {
        'old': 'TUTORIAL_HTML',
        'new': tutorial_html
    }, {
        'old': 'CATDICT',
        'new': json.dumps(cat_dict)
    }, {
        'old': 'METAFIELD',
        'new': "'category'"
    }]

    exp = MatchToSampleFromDLDataExperiment(
        htmlsrc='web/general_two_way.html',
        htmldst='hvm_basic_2way_n%05d.html',
        sandbox=sandbox,
        title=
        'Object recognition --- report what you see. Up to 50 cent performance based bonus',
        reward=0.25,
        duration=1600,
        keywords=[
            'neuroscience', 'psychology', 'experiment', 'object recognition'
        ],  # noqa
        description=
        "***You may complete as many HITs in this group as you want*** Complete a visual object recognition task where you report the identity of objects you see. We expect this HIT to take about 10 minutes or less, though you must finish in under 25 minutes.  By completing this HIT, you understand that you are participating in an experiment for the Massachusetts Institute of Technology (MIT) Department of Brain and Cognitive Sciences. You may quit at any time, and you will remain anonymous. Contact the requester with questions or concerns about this experiment.",  # noqa
        comment='hvm_basic_2ways',
        collection_name='hvm_basic_2ways',
        max_assignments=1,
        bucket_name='hvm_2ways',
        trials_per_hit=ACTUAL_TRIALS_PER_HIT + 24,  # 140 + 6x4 repeats
        html_data=html_data,
        tmpdir='tmp',
        frame_height_pix=1200,
        othersrc=[
            '../../lib/dltk.js', '../../lib/dltkexpr.js',
            '../../lib/dltkrsvp.js'
        ],
        additionalrules=additionalrules)

    # -- create trials
    exp.createTrials(sampling='with-replacement', verbose=1)
    n_total_trials = len(exp._trials['imgFiles'])
    assert n_total_trials == (8 * 7 / 2) * 250
    if debug:
        return exp, html_data

    # -- in each HIT, the followings will be repeated 4 times to
    # estimate "quality" of data
    ind_repeats = [0, 4, 47, 9, 17, 18] * REPEATS_PER_QE_IMG
    rng = np.random.RandomState(0)
    rng.shuffle(ind_repeats)
    trials_qe = {
        e: [copy.deepcopy(exp._trials[e][r]) for r in ind_repeats]
        for e in exp._trials
    }

    # -- flip answer choices of some repeated images
    n_qe = len(trials_qe['labels'])
    # if True, flip
    flips = [True] * (n_qe / 2) + [False] * (n_qe - n_qe / 2)
    assert len(flips) == n_qe
    rng.shuffle(flips)
    assert len(trials_qe.keys()) == 4

    for i, flip in enumerate(flips):
        if not flip:
            continue
        trials_qe['imgFiles'][i][1].reverse()
        trials_qe['labels'][i].reverse()
        trials_qe['imgData'][i]['Test'].reverse()

    # -- actual application
    offsets = np.arange(ACTUAL_TRIALS_PER_HIT - 3, -1, -ACTUAL_TRIALS_PER_HIT /
                        float(len(ind_repeats))).round().astype('int')
    assert len(offsets) == len(offsets)

    n_hits_floor = n_total_trials / ACTUAL_TRIALS_PER_HIT
    n_applied_hits = 0
    for i_trial_begin in xrange((n_hits_floor - 1) * ACTUAL_TRIALS_PER_HIT, -1,
                                -ACTUAL_TRIALS_PER_HIT):
        for k in trials_qe:
            for i, offset in enumerate(offsets):
                exp._trials[k].insert(i_trial_begin + offset, trials_qe[k][i])
                # exp._trials[k].insert(i_trial_begin + offset, 'test')
        n_applied_hits += 1

    print '** n_applied_hits =', n_applied_hits
    print '** len for each in _trials =', \
        {e: len(exp._trials[e]) for e in exp._trials}

    # -- sanity check
    assert 50 == n_applied_hits, n_applied_hits
    assert len(exp._trials['imgFiles']) == 50 * 164
    s_ref_labels = [tuple(e) for e in trials_qe['labels']]
    offsets2 = np.arange(24)[::-1] + offsets
    ibie = zip(range(0, 50 * 164, 164), range(164, 50 * 164, 164))
    assert all([[(e1, e2)
                 for e1, e2 in np.array(exp._trials['labels'][ib:ie])[offsets2]
                 ] == s_ref_labels for ib, ie in ibie])

    # -- drop unneeded, potentially abusable stuffs
    #del exp._trials['imgData']
    print '** Finished creating trials.'

    return exp, html_data
Example #8
0
def get_exp(sandbox=True, dummy_upload=True):

    dataset = hvm.HvMWithDiscfade()
    meta = dataset.meta
    categories = dataset.categories
    combs = [categories]

    inds = np.arange(len(meta))
    preproc = None
    image_bucket_name = 'hvm_timing'
    urls = dataset.publish_images(inds, preproc,
                                  image_bucket_name,
                                  dummy_upload=dummy_upload)

    base_url = 'https://canonical_images.s3.amazonaws.com/'
    response_images = [{
        'urls': [base_url + cat + '.png' for cat in categories],
        'meta': [{'category': 'Animals'},
                 {'category': 'Boats'},
                 {'category': 'Cars'},
                 {'category': 'Chairs'},
                 {'category': 'Faces'},
                 {'category': 'Fruits'},
                 {'category': 'Planes'},
                 {'category': 'Tables'}],
        'labels': categories}]

    html_data = {
            'response_images': response_images,
            'combs': combs,
            'num_trials': 90 * 64,
            'meta_field': 'category',
            'meta': meta,
            'urls': urls,
            'shuffle_test': True,
    }

    additionalrules = [{'old': 'LEARNINGPERIODNUMBER',
                    'new':  str(LEARNING_PERIOD)}]
    trials_per_hit = ACTUAL_TRIALS_PER_HIT + 32
    exp = MatchToSampleFromDLDataExperiment(
            htmlsrc='hvm_basic_categorization.html',
            htmldst='hvm_basic_categorization_n%05d.html',
            sandbox=sandbox,
            title='Object recognition --- report what you see',
            reward=0.35,
            duration=1500,
            keywords=['neuroscience', 'psychology', 'experiment', 'object recognition'],  # noqa
            description="***You may complete as many HITs in this group as you want*** Complete a visual object recognition task where you report the identity of objects you see. We expect this HIT to take about 10 minutes or less, though you must finish in under 25 minutes.  By completing this HIT, you understand that you are participating in an experiment for the Massachusetts Institute of Technology (MIT) Department of Brain and Cognitive Sciences. You may quit at any time, and you will remain anonymous. Contact the requester with questions or concerns about this experiment.",  # noqa
            comment="hvm basic categorization",  # noqa
            collection_name= 'hvm_basic_categorization',
            max_assignments=1,
            bucket_name='hvm_basic_categorization',
            trials_per_hit=trials_per_hit,  # 150 + 8x4 repeats
            html_data=html_data,
            frame_height_pix=1200,
            othersrc = ['../../lib/dltk.js'],
            additionalrules=additionalrules

            )

    # -- create trials
    exp.createTrials(sampling='with-replacement', verbose=1)
    n_total_trials = len(exp._trials['imgFiles'])
    assert n_total_trials == 90 * 64, n_total_trials

    # -- in each HIT, the followings will be repeated 4 times to
    # estimate "quality" of data

    ind_repeats = [3440, 3282, 3321, 3802, 5000, 3202, 4041, 4200] * REPEATS_PER_QE_IMG
    rng = np.random.RandomState(0)
    rng.shuffle(ind_repeats)
    trials_qe = {e: [copy.deepcopy(exp._trials[e][r]) for r in ind_repeats]
            for e in exp._trials}
    offsets = np.arange(
                ACTUAL_TRIALS_PER_HIT - 3, -1,
                -ACTUAL_TRIALS_PER_HIT / float(len(ind_repeats))
            ).round().astype('int')

    n_hits_floor = n_total_trials / ACTUAL_TRIALS_PER_HIT
    n_applied_hits = 0
    for i_trial_begin in xrange((n_hits_floor - 1) * ACTUAL_TRIALS_PER_HIT,
            -1, -ACTUAL_TRIALS_PER_HIT):
        for k in trials_qe:
            for i, offset in enumerate(offsets):
                exp._trials[k].insert(i_trial_begin + offset, trials_qe[k][i])
        n_applied_hits += 1

    print '** n_applied_hits =', n_applied_hits
    print '** len for each in _trials =', \
            {e: len(exp._trials[e]) for e in exp._trials}

    # -- sanity check
    assert 38 == n_applied_hits, n_applied_hits
    assert len(exp._trials['imgFiles']) == 6976, len(exp._trials['imgFiles'])
    s_ref_labels = set([tuple(e) for e in trials_qe['labels']])
    print(s_ref_labels)
    offsets2 = np.arange(8 * 4)[::-1] + offsets

    ibie = zip(range(0, 6976, trials_per_hit), range(trials_per_hit, 6976 + trials_per_hit, trials_per_hit))
    assert all([set([tuple(e) for e in
        np.array(exp._trials['labels'][ib:ie])[offsets2]]) == s_ref_labels
        for ib, ie in ibie[:-1]])
    print '** Finished creating trials.'

    return exp, html_data
Example #9
0
def get_exp(sandbox=True, debug=False):
    exp = MatchToSampleFromDLDataExperiment(
        htmlsrc='web/objectome_64objs_v2a.html',
        htmldst='objectome_64objs_v2a_n%05d.html',
        sandbox=sandbox,
        title='Object recognition --- report what you see',
        reward=0.15,
        duration=1600,
        keywords=[
            'neuroscience', 'psychology', 'experiment', 'object recognition'
        ],  # noqa
        description=
        "***You may complete as many HITs in this group as you want*** Complete a visual object recognition task where you report the identity of objects you see. We expect this HIT to take about 5 minutes or less, though you must finish in under 25 minutes.  By completing this HIT, you understand that you are participating in an experiment for the Massachusetts Institute of Technology (MIT) Department of Brain and Cognitive Sciences. You may quit at any time, and you will remain anonymous. Contact the requester with questions or concerns about this experiment.",  # noqa
        comment='objectome_64objs_v2a',
        collection_name='objectome_64objs_v2a',
        max_assignments=1,
        bucket_name='objectome_64objs_v2a',
        trials_per_hit=ACTUAL_TRIALS_PER_HIT + 16,  # 100 + 4x4 repeats
        tmpdir='tmp',
        frame_height_pix=1200,
        othersrc=[
            '../../mturkutils/lib/dltk.js', '../../mturkutils/lib/dltkexpr.js',
            '../../mturkutils/lib/dltkrsvp.js'
        ],  # noqa
        set_destination=True,
    )

    # -- create trials
    # exp.createTrials(sampling='with-replacement', verbose=1)   Don't use this
    exp._trials, alldat, _ = createTrials()
    n_total_trials = len(exp._trials['imgFiles'])
    assert n_total_trials == (64 * 63 / 2) * 250
    if debug:
        return exp

    # -- in each HIT, the followings will be repeated 4 times to
    # estimate "quality" of data
    # 138334: dog v camel  (difficult!)
    # 139363: rhino v elephant  (difficult!)
    ind_repeats = [138334, 139363, 47, 9] * REPEATS_PER_QE_IMG
    assert all(alldat[138334] == [701, 0, 33, 0, 33])
    assert all(alldat[139363] == [44070, 2, 39, 39, 39])

    rng = np.random.RandomState(0)
    rng.shuffle(ind_repeats)
    trials_qe = {
        e: [copy.deepcopy(exp._trials[e][r]) for r in ind_repeats]
        for e in exp._trials
    }

    # -- flip answer choices of some repeated images
    n_qe = len(trials_qe['imgFiles'])
    print '** n_qe =', n_qe
    # if True, flip
    flips = [True] * (n_qe / 2) + [False] * (n_qe - n_qe / 2)
    assert len(flips) == n_qe
    rng.shuffle(flips)

    for i, flip in enumerate(flips):
        if not flip:
            continue
        trials_qe['imgFiles'][i][1].reverse()
        trials_qe['labels'][i].reverse()

    # -- actual application
    offsets = np.arange(ACTUAL_TRIALS_PER_HIT - 3, -1, -ACTUAL_TRIALS_PER_HIT /
                        float(len(ind_repeats))).round().astype('int')
    assert len(offsets) == len(offsets)

    n_hits_floor = n_total_trials / ACTUAL_TRIALS_PER_HIT
    n_applied_hits = 0
    for i_trial_begin in xrange((n_hits_floor - 1) * ACTUAL_TRIALS_PER_HIT, -1,
                                -ACTUAL_TRIALS_PER_HIT):
        for k in trials_qe:
            for i, offset in enumerate(offsets):
                exp._trials[k].insert(i_trial_begin + offset, trials_qe[k][i])
                # exp._trials[k].insert(i_trial_begin + offset, 'test')
        n_applied_hits += 1

    print '** n_applied_hits =', n_applied_hits
    print '** len for each in _trials =', \
        {e: len(exp._trials[e]) for e in exp._trials}

    # -- sanity check
    assert 5040 == n_applied_hits, n_applied_hits
    assert len(exp._trials['imgFiles']) == 5040 * (100 + 16)
    s_ref_labels = [tuple(e) for e in trials_qe['labels']]
    print '**', s_ref_labels
    offsets2 = np.arange(16)[::-1] + offsets
    ibie = zip(range(0, 5040 * 116, 116), range(116, 5041 * 116, 116))
    assert all([[(e1, e2)
                 for e1, e2 in np.array(exp._trials['labels'][ib:ie])[offsets2]
                 ] == s_ref_labels for ib, ie in ibie])

    # -- drop unneeded, potentially abusable stuffs
    # del exp._trials['imgData']
    print '** Finished creating trials.'

    return exp
Example #10
0
def get_exp(sandbox=True, selected_basic_objs=SELECTED_BASIC_OBJS,
            data_intercls=DATA_INTERCLS,
            debug=False):
    selected_intercls_pairs = np.array(data_intercls['CMinds_cars_tanks'])
    selected_intercls_pairs = selected_intercls_pairs[data_intercls['si']]
    selected_intercls_pairs[:, 0] -= 64         # subtract car base index
    selected_intercls_pairs[:, 1] -= 64 + 90    # same for tanks

    meta, _, meta_cars, meta_tanks = get_meta()
    cars = np.unique(meta_cars['obj'])
    tanks = np.unique(meta_tanks['obj'])
    combs = [(cars[e1], tanks[e2]) for e1, e2 in selected_intercls_pairs]
    combs_dummy1 = [(o1, o2) for o1 in selected_basic_objs for o2 in cars]
    combs_dummy2 = [(o1, o2) for o1 in selected_basic_objs for o2 in tanks]
    rng = np.random.RandomState(0)
    rng.shuffle(combs_dummy1)
    rng.shuffle(combs_dummy2)
    combs = combs + combs_dummy1[:50] + combs_dummy2[:50]
    assert len(combs) == 200

    urls = [get_url(e['obj'], e['id']) for e in meta]
    response_images = [{
        'urls': [get_url_labeled_resp_img(o1), get_url_labeled_resp_img(o2)],
        'meta': [{'obj': o} for o in [o1, o2]],
        'labels': [o1, o2]
        } for o1, o2 in combs]

    html_data = {
        'response_images': response_images,
        'combs': combs,
        'num_trials': 125 * 2,
        'meta_field': 'obj',
        'meta': meta,
        'urls': urls,
        'shuffle_test': True,
    }

    exp = MatchToSampleFromDLDataExperiment(
            htmlsrc='web/intercls_cars_tanks.html',
            htmldst='intercls_cars_tanks_n%05d.html',
            sandbox=sandbox,
            title='Object recognition --- report what you see',
            reward=0.15,
            duration=1600,
            keywords=['neuroscience', 'psychology', 'experiment', 'object recognition'],  # noqa
            description="***You may complete as many HITs in this group as you want*** Complete a visual object recognition task where you report the identity of objects you see. We expect this HIT to take about 5 minutes or less, though you must finish in under 25 minutes.  By completing this HIT, you understand that you are participating in an experiment for the Massachusetts Institute of Technology (MIT) Department of Brain and Cognitive Sciences. You may quit at any time, and you will remain anonymous. Contact the requester with questions or concerns about this experiment.",  # noqa
            comment="objectome_intercls_cars_tanks_v3.  100+100 selected pairs across 22 basic, 30 cars, and 30 tanks",  # noqa
            collection_name='objectome_intercls_cars_tanks_v3',
            max_assignments=1,
            bucket_name='objectome_intercls_cars_tanks_v3',
            trials_per_hit=ACTUAL_TRIALS_PER_HIT + 16,  # 100 + 4x4 repeats
            tmpdir='tmp',
            html_data=html_data,
            frame_height_pix=1200,
            othersrc=['../../mturkutils/lib/dltk.js', '../../mturkutils/lib/dltkexpr.js', '../../mturkutils/lib/dltkrsvp.js'],   # noqa
            set_destination=True,
            )

    # -- create trials
    exp.createTrials(sampling='with-replacement', verbose=1)
    if debug:
        return exp

    n_total_trials = len(exp._trials['imgFiles'])
    assert n_total_trials == 200 * 250

    # -- in each HIT, the followings will be repeated 4 times to
    # estimate "quality" of data
    # the choice of v--- this array below is arbitrary
    ind_repeats = [1, 9, 60, 27] * REPEATS_PER_QE_IMG
    rng = np.random.RandomState(0)
    rng.shuffle(ind_repeats)
    trials_qe = {e: [copy.deepcopy(exp._trials[e][r]) for r in ind_repeats]
                 for e in exp._trials}

    # -- flip answer choices of some repeated images
    n_qe = len(trials_qe['imgFiles'])
    print '** n_qe =', n_qe
    # if True, flip
    flips = [True] * (n_qe / 2) + [False] * (n_qe - n_qe / 2)
    assert len(flips) == n_qe
    rng.shuffle(flips)
    assert len(trials_qe.keys()) == 4

    for i, flip in enumerate(flips):
        if not flip:
            continue
        trials_qe['imgFiles'][i][1].reverse()
        trials_qe['labels'][i].reverse()
        trials_qe['imgData'][i]['Test'].reverse()

    # -- actual application
    offsets = np.arange(
        ACTUAL_TRIALS_PER_HIT - 3, -1,
        -ACTUAL_TRIALS_PER_HIT / float(len(ind_repeats))
    ).round().astype('int')
    assert len(offsets) == len(offsets)

    n_hits_floor = n_total_trials / ACTUAL_TRIALS_PER_HIT
    n_applied_hits = 0
    for i_trial_begin in xrange((n_hits_floor - 1) * ACTUAL_TRIALS_PER_HIT,
                                -1, -ACTUAL_TRIALS_PER_HIT):
        for k in trials_qe:
            for i, offset in enumerate(offsets):
                exp._trials[k].insert(i_trial_begin + offset, trials_qe[k][i])
                # exp._trials[k].insert(i_trial_begin + offset, 'test')
        n_applied_hits += 1

    print '** n_applied_hits =', n_applied_hits
    print '** len for each in _trials =', \
        {e: len(exp._trials[e]) for e in exp._trials}

    # -- sanity check
    assert 500 == n_applied_hits
    assert len(exp._trials['imgFiles']) == 500 * (100 + 16)
    s_ref_labels = [tuple(e) for e in trials_qe['labels']]
    print '**', s_ref_labels
    offsets2 = np.arange(16)[::-1] + offsets
    ibie = zip(range(0, 500 * 116, 116), range(501 * 116, 116))
    assert all(
        [[(e1, e2) for e1, e2 in
         np.array(exp._trials['labels'][ib:ie])[offsets2]] == s_ref_labels
         for ib, ie in ibie])

    # -- drop unneeded, potentially abusable stuffs
    del exp._trials['imgData']
    del exp._trials['meta_field']
    print '** Finished creating trials.'

    return exp, html_data
Example #11
0
def get_exp(sandbox=True,
            stimdur=100,
            selected_basic_objs=SELECTED_BASIC_OBJS,
            debug=False,
            mode='default'):
    meta = get_meta()
    combs = [e for e in itertools.combinations(selected_basic_objs, 2)]
    urls = [get_url(e['obj'], e['id']) for e in meta]
    response_images = [{
        'urls': [get_url_labeled_resp_img(o1),
                 get_url_labeled_resp_img(o2)],
        'meta': [{
            'obj': o
        } for o in [o1, o2]],
        'labels': [o1, o2]
    } for o1, o2 in combs]

    html_data = {
        'response_images': response_images,
        'combs': combs,
        'num_trials': 125 * 2,
        'meta_field': 'obj',
        'meta': meta,
        'urls': urls,
        'shuffle_test': True,
    }

    # few different options
    htmlsrcdct = {}
    descdct = {}
    htmldstdct = {}
    tmpdirdct = {}
    addirules = {}

    htmlsrcdct['default'] = 'web/objt_tcurve_o16s0.html'
    descdct[
        'default'] = "***You may complete as many HITs in this group as you want*** Complete a visual object recognition task where you report the identity of objects you see. We expect this HIT to take about 10 minutes or less, though you must finish in under 25 minutes.  By completing this HIT, you understand that you are participating in an experiment for the Massachusetts Institute of Technology (MIT) Department of Brain and Cognitive Sciences. You may quit at any time, and you will remain anonymous. Contact the requester with questions or concerns about this experiment."  # noqa
    htmldstdct['default'] = 'objt_tcurve_o16s0_%04d_n%%05d.html' % int(
        stimdur)  # noqa
    tmpdirdct['default'] = 'tmp/t%04d' % int(stimdur)
    addirules['default'] = []

    htmlsrcdct['softnotice'] = 'web/objt_tcurve_o16s0_softnotice.html'
    descdct['softnotice'] = descdct['default']
    htmldstdct['softnotice'] = 'objt_tcurve_o16s0_soft_%04d_n%%05d.html' % int(
        stimdur)  # noqa
    tmpdirdct['softnotice'] = 'tmp/t%04d_soft' % int(stimdur)
    addirules['softnotice'] = []

    htmlsrcdct['winonly'] = htmlsrcdct['default']
    descdct[
        'winonly'] = "***Chrome or Firefox on Windows only*** Complete a visual object recognition task where you report the identity of objects you see. We expect this HIT to take about 10 minutes or less, though you must finish in under 25 minutes.  By completing this HIT, you understand that you are participating in an experiment for the Massachusetts Institute of Technology (MIT) Department of Brain and Cognitive Sciences. You may quit at any time, and you will remain anonymous. Contact the requester with questions or concerns about this experiment."  # noqa
    htmldstdct['winonly'] = htmldstdct['default']
    tmpdirdct['winonly'] = tmpdirdct['default']
    addirules['winonly'] = [{
        'old': "supportedOS: ['Windows', 'Mac', 'Linux']",
        'new': "supportedOS: ['Windows']",
        'n': 1,
    }]

    htmlsrcdct['winchromeonly'] = htmlsrcdct['default']
    descdct[
        'winchromeonly'] = "***Latest Chrome on Windows only*** Complete a visual object recognition task where you report the identity of objects you see. We expect this HIT to take about 10 minutes or less, though you must finish in under 25 minutes.  By completing this HIT, you understand that you are participating in an experiment for the Massachusetts Institute of Technology (MIT) Department of Brain and Cognitive Sciences. You may quit at any time, and you will remain anonymous. Contact the requester with questions or concerns about this experiment."  # noqa
    htmldstdct['winchromeonly'] = htmldstdct['default']
    tmpdirdct['winchromeonly'] = tmpdirdct['default']
    addirules['winchromeonly'] = [{
        'old': "supportedBrowser: ['Chrome', 'Firefox']",
        'new': "supportedBrowser: ['Chrome']",
        'n': 1,
    }] + addirules['winonly']

    htmlsrcdct['winchromeonlymask'] = 'web/objt_tcurve_o16s0_postmask.html'
    descdct['winchromeonlymask'] = descdct['winchromeonly']
    htmldstdct[
        'winchromeonlymask'] = 'objt_tcurve_o16s0_mask_%04d_n%%05d.html' % int(
            stimdur)  # noqa
    tmpdirdct['winchromeonlymask'] = 'tmp/t%04d_mask' % int(stimdur)
    addirules['winchromeonlymask'] = [{
        'old': "supportedBrowser: ['Chrome', 'Firefox']",
        'new': "supportedBrowser: ['Chrome']",
        'n': 1,
    }] + addirules['winonly']

    htmlsrcdct['mask'] = 'web/objt_tcurve_o16s0_postmask.html'
    descdct['mask'] = descdct['default']
    htmldstdct['mask'] = 'objt_tcurve_o16s0_mask_%04d_n%%05d.html' % int(
        stimdur)  # noqa
    tmpdirdct['mask'] = 'tmp/t%04d_mask' % int(stimdur)
    addirules['mask'] = addirules['default']

    exp = MatchToSampleFromDLDataExperiment(
        htmlsrc=htmlsrcdct[mode],
        htmldst=htmldstdct[mode],
        sandbox=sandbox,
        title='Object recognition --- report what you see',
        reward=0.25,
        duration=1600,
        keywords=[
            'neuroscience', 'psychology', 'experiment', 'object recognition'
        ],  # noqa
        description=descdct[mode],
        comment="objectome_time_curve_%dms.  0-th set of 16 objects" %
        int(stimdur),  # noqa
        collection_name='objectome_tcurve_16objsset0',
        max_assignments=1,
        bucket_name='objectome_tcurve_16objsset0',
        trials_per_hit=ACTUAL_TRIALS_PER_HIT + 24,  # 150 + 6x4 repeats
        html_data=html_data,
        tmpdir=tmpdirdct[mode],
        frame_height_pix=1200,
        othersrc=[
            '../../mturkutils/lib/dltk.js', '../../mturkutils/lib/dltkexpr.js',
            '../../mturkutils/lib/dltkrsvp.js'
        ],  # noqa
        additionalrules=[{
            'old': 'stimduration = 100;',
            'new': 'stimduration = %f;' % stimdur,
            'n': 1,
        }] + addirules[mode],
    )

    # -- create trials
    exp.createTrials(sampling='with-replacement', verbose=1)
    n_total_trials = len(exp._trials['imgFiles'])
    assert n_total_trials == (16 * 15 / 2) * 250
    if debug:
        return exp, html_data

    # -- in each HIT, the followings will be repeated 4 times to
    # estimate "quality" of data
    ind_repeats = [0, 4, 47, 9, 17, 18] * REPEATS_PER_QE_IMG
    rng = np.random.RandomState(0)
    rng.shuffle(ind_repeats)
    trials_qe = {
        e: [copy.deepcopy(exp._trials[e][r]) for r in ind_repeats]
        for e in exp._trials
    }
    #print np.unique([e[0] for e in trials_qe['imgFiles']])
    #print np.unique([tuple(e) for e in trials_qe['labels']])

    # -- flip answer choices of some repeated images
    n_qe = len(trials_qe['labels'])
    # if True, flip
    flips = [True] * (n_qe / 2) + [False] * (n_qe - n_qe / 2)
    assert len(flips) == n_qe
    rng.shuffle(flips)
    assert len(trials_qe.keys()) == 4

    for i, flip in enumerate(flips):
        if not flip:
            continue
        trials_qe['imgFiles'][i][1].reverse()
        trials_qe['labels'][i].reverse()
        trials_qe['imgData'][i]['Test'].reverse()

    # -- actual application
    offsets = np.arange(ACTUAL_TRIALS_PER_HIT - 3, -1, -ACTUAL_TRIALS_PER_HIT /
                        float(len(ind_repeats))).round().astype('int')
    assert len(offsets) == len(offsets)

    n_hits_floor = n_total_trials / ACTUAL_TRIALS_PER_HIT
    n_applied_hits = 0
    for i_trial_begin in xrange((n_hits_floor - 1) * ACTUAL_TRIALS_PER_HIT, -1,
                                -ACTUAL_TRIALS_PER_HIT):
        for k in trials_qe:
            for i, offset in enumerate(offsets):
                exp._trials[k].insert(i_trial_begin + offset, trials_qe[k][i])
                #exp._trials[k].insert(i_trial_begin + offset, 'test')
        n_applied_hits += 1

    print '** n_applied_hits =', n_applied_hits
    print '** len for each in _trials =', \
            {e: len(exp._trials[e]) for e in exp._trials}

    # -- sanity check
    assert 200 == n_applied_hits, n_applied_hits
    assert len(exp._trials['imgFiles']) == 200 * 174
    s_ref_labels = [tuple(e) for e in trials_qe['labels']]
    offsets2 = np.arange(24)[::-1] + offsets
    ibie = zip(range(0, 200 * 174, 174), range(174, 201 * 174, 174))
    assert all([[(e1, e2)
                 for e1, e2 in np.array(exp._trials['labels'][ib:ie])[offsets2]
                 ] == s_ref_labels for ib, ie in ibie])
    #print set(s_ref_labels), len(set(s_ref_labels))

    # -- drop unneeded, potentially abusable stuffs
    del exp._trials['imgData']
    print '** Finished creating trials.'

    return exp, html_data
Example #12
0
def get_exp(sandbox=True, dummy_upload=True):

    dataset = lcs.LandoltCs()
    meta = dataset.meta
    preproc = dict(crop=None, crop_rand=None, dtype='float32', mask=None, mode='L', normalize=False,
                   resize_to=(256, 256), seed=0)
    img_urls = dataset.publish_images(range(len(dataset.meta)), preproc, 'acuity_tasks',
                                      dummy_upload=dummy_upload)
    response_im_inds = [29, 24, 19, 34, 14, 39,  4,  9]
    response_urls = []
    response_metas = []
    response_labels = []
    for ind in response_im_inds:
        response_urls.append(img_urls[ind])
        response_metas.append({k: meta[ind][k] for k in meta.dtype.names})
        response_labels.append(None)
    response_images = [{'urls': response_urls, 'meta': response_metas, 'labels': response_labels}]

    combs = [[m['rotation'] for m in response_images[0]['meta']]]
    additionalrules = [{'old': 'LEARNINGPERIODNUMBER',
                        'new':  str(10)},
                       {'old': 'OBJTYPE',
                        'new': 'Landolt C'}]
    html_data = {
            'response_images': response_images,
            'combs': combs,
            'num_trials': 184,
            'meta_field': 'rotation',
            'meta': meta,
            'urls': img_urls
    }
    exp = MatchToSampleFromDLDataExperiment(
            htmlsrc='landolt_c_task.html',
            htmldst='landolt_c_n%05d.html',
            sandbox=sandbox,
            title='Object recognition --- report what you see',
            reward=0.35,
            duration=1500,
            keywords=['neuroscience', 'psychology', 'experiment', 'object recognition'],  # noqa
            description="***You may complete as many HITs in this group as you want*** Complete a visual object recognition task where you report the identity of objects you see. We expect this HIT to take about 10 minutes or less, though you must finish in under 25 minutes.  By completing this HIT, you understand that you are participating in an experiment for the Massachusetts Institute of Technology (MIT) Department of Brain and Cognitive Sciences. You may quit at any time, and you will remain anonymous. Contact the requester with questions or concerns about this experiment.",  # noqa
            comment="landolt c acuity",  # noqa
            collection_name= 'landolt_c',
            max_assignments=20,
            bucket_name='landolt_c',
            trials_per_hit=184,  # 150 + 8x4 repeats
            html_data=html_data,
            frame_height_pix=1200,
            othersrc = ['../../mturkutils/lib/dltk.js', '../../mturkutils/lib/dltkexpr.js', '../../mturkutils/lib/dltkrsvp.js'],
            additionalrules=additionalrules

            )

    # -- create trials
    exp.createTrials(sampling='with-replacement', verbose=1)
    #n_total_trials = len(exp._trials['imgFiles'])
    #assert n_total_trials == 40, n_total_trials

    # -- in each HIT, the followings will be repeated 4 times to
    # estimate "quality" of data

    #ind_repeats = [3440, 3282, 3321, 3802, 5000, 3202, 4041, 4200] * REPEATS_PER_QE_IMG
    #rng = np.random.RandomState(0)
    #rng.shuffle(ind_repeats)
    # trials_qe = {e: [copy.deepcopy(exp._trials[e][r]) for r in ind_repeats]
    #         for e in exp._trials}
    # offsets = np.arange(
    #             ACTUAL_TRIALS_PER_HIT - 3, -1,
    #             -ACTUAL_TRIALS_PER_HIT / float(len(ind_repeats))
    #         ).round().astype('int')
    #
    # n_hits_floor = n_total_trials / ACTUAL_TRIALS_PER_HIT
    # n_applied_hits = 0
    # for i_trial_begin in xrange((n_hits_floor - 1) * ACTUAL_TRIALS_PER_HIT,
    #         -1, -ACTUAL_TRIALS_PER_HIT):
    #     for k in trials_qe:
    #         for i, offset in enumerate(offsets):
    #             exp._trials[k].insert(i_trial_begin + offset, trials_qe[k][i])
    #     n_applied_hits += 1
    #
    # print '** n_applied_hits =', n_applied_hits
    # print '** len for each in _trials =', \
    #         {e: len(exp._trials[e]) for e in exp._trials}
    #
    # # -- sanity check
    # assert 38 == n_applied_hits, n_applied_hits
    # assert len(exp._trials['imgFiles']) == 6976, len(exp._trials['imgFiles'])
    # s_ref_labels = set([tuple(e) for e in trials_qe['labels']])
    # print(s_ref_labels)
    # offsets2 = np.arange(8 * 4)[::-1] + offsets
    #
    # ibie = zip(range(0, 6976, trials_per_hit), range(trials_per_hit, 6976 + trials_per_hit, trials_per_hit))
    # assert all([set([tuple(e) for e in
    #     np.array(exp._trials['labels'][ib:ie])[offsets2]]) == s_ref_labels
    #     for ib, ie in ibie[:-1]])
    # print '** Finished creating trials.'
    return exp, html_data
Example #13
0
def get_exp(sandbox=True, debug=False):
    exp = MatchToSampleFromDLDataExperiment(
        htmlsrc="web/objectome_64objs_v2a.html",
        htmldst="objectome_64objs_v2a_n%05d.html",
        sandbox=sandbox,
        title="Object recognition --- report what you see",
        reward=0.15,
        duration=1600,
        keywords=["neuroscience", "psychology", "experiment", "object recognition"],  # noqa
        description="***You may complete as many HITs in this group as you want*** Complete a visual object recognition task where you report the identity of objects you see. We expect this HIT to take about 5 minutes or less, though you must finish in under 25 minutes.  By completing this HIT, you understand that you are participating in an experiment for the Massachusetts Institute of Technology (MIT) Department of Brain and Cognitive Sciences. You may quit at any time, and you will remain anonymous. Contact the requester with questions or concerns about this experiment.",  # noqa
        comment="objectome_64objs_v2a",
        collection_name="objectome_64objs_v2a",
        max_assignments=1,
        bucket_name="objectome_64objs_v2a",
        trials_per_hit=ACTUAL_TRIALS_PER_HIT + 16,  # 100 + 4x4 repeats
        tmpdir="tmp",
        frame_height_pix=1200,
        othersrc=["../../lib/dltk.js", "../../lib/dltkexpr.js", "../../lib/dltkrsvp.js"],  # noqa
        set_destination=True,
    )

    # -- create trials
    # exp.createTrials(sampling='with-replacement', verbose=1)   Don't use this
    exp._trials, alldat, _ = createTrials()
    n_total_trials = len(exp._trials["imgFiles"])
    assert n_total_trials == (64 * 63 / 2) * 250
    if debug:
        return exp

    # -- in each HIT, the followings will be repeated 4 times to
    # estimate "quality" of data
    # 138334: dog v camel  (difficult!)
    # 139363: rhino v elephant  (difficult!)
    ind_repeats = [138334, 139363, 47, 9] * REPEATS_PER_QE_IMG
    assert all(alldat[138334] == [701, 0, 33, 0, 33])
    assert all(alldat[139363] == [44070, 2, 39, 39, 39])

    rng = np.random.RandomState(0)
    rng.shuffle(ind_repeats)
    trials_qe = {e: [copy.deepcopy(exp._trials[e][r]) for r in ind_repeats] for e in exp._trials}

    # -- flip answer choices of some repeated images
    n_qe = len(trials_qe["imgFiles"])
    print "** n_qe =", n_qe
    # if True, flip
    flips = [True] * (n_qe / 2) + [False] * (n_qe - n_qe / 2)
    assert len(flips) == n_qe
    rng.shuffle(flips)

    for i, flip in enumerate(flips):
        if not flip:
            continue
        trials_qe["imgFiles"][i][1].reverse()
        trials_qe["labels"][i].reverse()

    # -- actual application
    offsets = (
        np.arange(ACTUAL_TRIALS_PER_HIT - 3, -1, -ACTUAL_TRIALS_PER_HIT / float(len(ind_repeats))).round().astype("int")
    )
    assert len(offsets) == len(offsets)

    n_hits_floor = n_total_trials / ACTUAL_TRIALS_PER_HIT
    n_applied_hits = 0
    for i_trial_begin in xrange((n_hits_floor - 1) * ACTUAL_TRIALS_PER_HIT, -1, -ACTUAL_TRIALS_PER_HIT):
        for k in trials_qe:
            for i, offset in enumerate(offsets):
                exp._trials[k].insert(i_trial_begin + offset, trials_qe[k][i])
                # exp._trials[k].insert(i_trial_begin + offset, 'test')
        n_applied_hits += 1

    print "** n_applied_hits =", n_applied_hits
    print "** len for each in _trials =", {e: len(exp._trials[e]) for e in exp._trials}

    # -- sanity check
    assert 5040 == n_applied_hits, n_applied_hits
    assert len(exp._trials["imgFiles"]) == 5040 * (100 + 16)
    s_ref_labels = [tuple(e) for e in trials_qe["labels"]]
    print "**", s_ref_labels
    offsets2 = np.arange(16)[::-1] + offsets
    ibie = zip(range(0, 5040 * 116, 116), range(116, 5041 * 116, 116))
    assert all(
        [[(e1, e2) for e1, e2 in np.array(exp._trials["labels"][ib:ie])[offsets2]] == s_ref_labels for ib, ie in ibie]
    )

    # -- drop unneeded, potentially abusable stuffs
    # del exp._trials['imgData']
    print "** Finished creating trials."

    return exp
Example #14
0
def get_exp(sandbox=True, stimdur=100,
        selected_basic_objs=SELECTED_BASIC_OBJS, debug=False, mode='default'):
    meta = get_meta()
    combs = [e for e in itertools.combinations(selected_basic_objs, 2)]
    urls = [get_url(e['obj'], e['id']) for e in meta]
    response_images = [{
        'urls': [get_url_labeled_resp_img(o1), get_url_labeled_resp_img(o2)],
        'meta': [{'obj': o} for o in [o1, o2]],
        'labels': [o1, o2]
        } for o1, o2 in combs]

    html_data = {
            'response_images': response_images,
            'combs': combs,
            'num_trials': 125 * 2,
            'meta_field': 'obj',
            'meta': meta,
            'urls': urls,
            'shuffle_test': True,
    }

    # few different options
    htmlsrcdct = {}
    descdct = {}
    htmldstdct = {}
    tmpdirdct = {}
    addirules = {}

    htmlsrcdct['default'] = 'web/objt_tcurve_o16s0.html'
    descdct['default'] = "***You may complete as many HITs in this group as you want*** Complete a visual object recognition task where you report the identity of objects you see. We expect this HIT to take about 10 minutes or less, though you must finish in under 25 minutes.  By completing this HIT, you understand that you are participating in an experiment for the Massachusetts Institute of Technology (MIT) Department of Brain and Cognitive Sciences. You may quit at any time, and you will remain anonymous. Contact the requester with questions or concerns about this experiment."  # noqa
    htmldstdct['default'] = 'objt_tcurve_o16s0_%04d_n%%05d.html' % int(stimdur)   # noqa
    tmpdirdct['default'] = 'tmp/t%04d' % int(stimdur)
    addirules['default'] = []

    htmlsrcdct['softnotice'] = 'web/objt_tcurve_o16s0_softnotice.html'
    descdct['softnotice'] = descdct['default']
    htmldstdct['softnotice'] = 'objt_tcurve_o16s0_soft_%04d_n%%05d.html' % int(stimdur)  # noqa
    tmpdirdct['softnotice'] = 'tmp/t%04d_soft' % int(stimdur)
    addirules['softnotice'] = []

    htmlsrcdct['winonly'] = htmlsrcdct['default']
    descdct['winonly'] = "***Chrome or Firefox on Windows only*** Complete a visual object recognition task where you report the identity of objects you see. We expect this HIT to take about 10 minutes or less, though you must finish in under 25 minutes.  By completing this HIT, you understand that you are participating in an experiment for the Massachusetts Institute of Technology (MIT) Department of Brain and Cognitive Sciences. You may quit at any time, and you will remain anonymous. Contact the requester with questions or concerns about this experiment."  # noqa
    htmldstdct['winonly'] = htmldstdct['default']
    tmpdirdct['winonly'] = tmpdirdct['default']
    addirules['winonly'] = [{
        'old': "supportedOS: ['Windows', 'Mac', 'Linux']",
        'new': "supportedOS: ['Windows']",
        'n': 1,
        }]

    htmlsrcdct['winchromeonly'] = htmlsrcdct['default']
    descdct['winchromeonly'] = "***Latest Chrome on Windows only*** Complete a visual object recognition task where you report the identity of objects you see. We expect this HIT to take about 10 minutes or less, though you must finish in under 25 minutes.  By completing this HIT, you understand that you are participating in an experiment for the Massachusetts Institute of Technology (MIT) Department of Brain and Cognitive Sciences. You may quit at any time, and you will remain anonymous. Contact the requester with questions or concerns about this experiment."  # noqa
    htmldstdct['winchromeonly'] = htmldstdct['default']
    tmpdirdct['winchromeonly'] = tmpdirdct['default']
    addirules['winchromeonly'] = [{
        'old': "supportedBrowser: ['Chrome', 'Firefox']",
        'new': "supportedBrowser: ['Chrome']",
        'n': 1,
        }] + addirules['winonly']

    htmlsrcdct['winchromeonlymask'] = 'web/objt_tcurve_o16s0_postmask.html'
    descdct['winchromeonlymask'] = descdct['winchromeonly']
    htmldstdct['winchromeonlymask'] = 'objt_tcurve_o16s0_mask_%04d_n%%05d.html' % int(stimdur)  # noqa
    tmpdirdct['winchromeonlymask'] = 'tmp/t%04d_mask' % int(stimdur)
    addirules['winchromeonlymask'] = [{
        'old': "supportedBrowser: ['Chrome', 'Firefox']",
        'new': "supportedBrowser: ['Chrome']",
        'n': 1,
        }] + addirules['winonly']

    htmlsrcdct['mask'] = 'web/objt_tcurve_o16s0_postmask.html'
    descdct['mask'] = descdct['default']
    htmldstdct['mask'] = 'objt_tcurve_o16s0_mask_%04d_n%%05d.html' % int(stimdur)  # noqa
    tmpdirdct['mask'] = 'tmp/t%04d_mask' % int(stimdur)
    addirules['mask'] = addirules['default']

    exp = MatchToSampleFromDLDataExperiment(
            htmlsrc=htmlsrcdct[mode],
            htmldst=htmldstdct[mode],
            sandbox=sandbox,
            title='Object recognition --- report what you see',
            reward=0.25,
            duration=1600,
            keywords=['neuroscience', 'psychology', 'experiment', 'object recognition'],  # noqa
            description=descdct[mode],
            comment="objectome_time_curve_%dms.  0-th set of 16 objects" % int(stimdur),  # noqa
            collection_name='objectome_tcurve_16objsset0',
            max_assignments=1,
            bucket_name='objectome_tcurve_16objsset0',
            trials_per_hit=ACTUAL_TRIALS_PER_HIT + 24,  # 150 + 6x4 repeats
            html_data=html_data,
            tmpdir=tmpdirdct[mode],
            frame_height_pix=1200,
            othersrc=['../../lib/dltk.js', '../../lib/dltkexpr.js', '../../lib/dltkrsvp.js'],   # noqa
            additionalrules=[{
                'old': 'stimduration = 100;',
                'new': 'stimduration = %f;' % stimdur,
                'n': 1,
                }] + addirules[mode],
            )

    # -- create trials
    exp.createTrials(sampling='with-replacement', verbose=1)
    n_total_trials = len(exp._trials['imgFiles'])
    assert n_total_trials == (16 * 15 / 2) * 250
    if debug:
        return exp, html_data

    # -- in each HIT, the followings will be repeated 4 times to
    # estimate "quality" of data
    ind_repeats = [0, 4, 47, 9, 17, 18] * REPEATS_PER_QE_IMG
    rng = np.random.RandomState(0)
    rng.shuffle(ind_repeats)
    trials_qe = {e: [copy.deepcopy(exp._trials[e][r]) for r in ind_repeats]
            for e in exp._trials}
    #print np.unique([e[0] for e in trials_qe['imgFiles']])
    #print np.unique([tuple(e) for e in trials_qe['labels']])

    # -- flip answer choices of some repeated images
    n_qe = len(trials_qe['labels'])
    # if True, flip
    flips = [True] * (n_qe / 2) + [False] * (n_qe - n_qe / 2)
    assert len(flips) == n_qe
    rng.shuffle(flips)
    assert len(trials_qe.keys()) == 4

    for i, flip in enumerate(flips):
        if not flip:
            continue
        trials_qe['imgFiles'][i][1].reverse()
        trials_qe['labels'][i].reverse()
        trials_qe['imgData'][i]['Test'].reverse()

    # -- actual application
    offsets = np.arange(
                ACTUAL_TRIALS_PER_HIT - 3, -1,
                -ACTUAL_TRIALS_PER_HIT / float(len(ind_repeats))
            ).round().astype('int')
    assert len(offsets) == len(offsets)

    n_hits_floor = n_total_trials / ACTUAL_TRIALS_PER_HIT
    n_applied_hits = 0
    for i_trial_begin in xrange((n_hits_floor - 1) * ACTUAL_TRIALS_PER_HIT,
            -1, -ACTUAL_TRIALS_PER_HIT):
        for k in trials_qe:
            for i, offset in enumerate(offsets):
                exp._trials[k].insert(i_trial_begin + offset, trials_qe[k][i])
                #exp._trials[k].insert(i_trial_begin + offset, 'test')
        n_applied_hits += 1

    print '** n_applied_hits =', n_applied_hits
    print '** len for each in _trials =', \
            {e: len(exp._trials[e]) for e in exp._trials}

    # -- sanity check
    assert 200 == n_applied_hits, n_applied_hits
    assert len(exp._trials['imgFiles']) == 200 * 174
    s_ref_labels = [tuple(e) for e in trials_qe['labels']]
    offsets2 = np.arange(24)[::-1] + offsets
    ibie = zip(range(0, 200 * 174, 174), range(174, 201 * 174, 174))
    assert all([[(e1, e2) for e1, e2 in
        np.array(exp._trials['labels'][ib:ie])[offsets2]] == s_ref_labels
        for ib, ie in ibie])
    #print set(s_ref_labels), len(set(s_ref_labels))

    # -- drop unneeded, potentially abusable stuffs
    del exp._trials['imgData']
    print '** Finished creating trials.'

    return exp, html_data
def get_exp(sandbox=True, dummy_upload=True):

    n_hits_from_data = len(meta) / ACTUAL_TRIALS_PER_HIT
    categories = np.unique(dataset.meta['identity'])
    combs = [categories]

    inds = np.arange(len(meta))
    preproc = dataset.default_preproc
    #preproc['flip_tb'] = True
    image_bucket_name = 'freiwald_tsao_2010'
    urls = dataset.publish_images(inds, preproc,
                                  image_bucket_name,
                                  dummy_upload=dummy_upload)

    base_url = 'https://canonical_images.s3.amazonaws.com/'
    response_images = [{
        'urls': [base_url + 'freiwald_tsao_2010_face%.2da.png' % i for i in range(1, 29)],
        'meta': [{'identity': i} for i in range(1, 29)],
        'labels': categories}]

    mult = 10
    html_data = {
            'response_images': response_images,
            'combs': combs,
            'num_trials': 220 * mult,
            'meta_field': 'identity',
            'meta': tb.tab_rowstack([meta] * mult),
            'urls': urls * mult,
            'shuffle_test': False,
    }

    additionalrules = [{'old': 'LEARNINGPERIODNUMBER',
                        'new':  str(LEARNING_PERIOD)}]

    trials_per_hit = ACTUAL_TRIALS_PER_HIT + REPEATS_PER_QE_IMG * len(repeat_inds) + LEARNING_PERIOD
    exp = MatchToSampleFromDLDataExperiment(
            htmlsrc='ft_identity.html',
            htmldst='ft_identity_n%05d.html',
            tmpdir='tmp_ft_identity',
            sandbox=sandbox,
            title='Face recognition --- report what you see',
            reward=0.35,
            duration=1500,
            keywords=['neuroscience', 'psychology', 'experiment', 'object recognition'],  # noqa
            description="***You may complete as many HITs in this group as you want*** Complete a visual object recognition task where you report the identity of objects you see. We expect this HIT to take about 10 minutes or less, though you must finish in under 25 minutes.  By completing this HIT, you understand that you are participating in an experiment for the Massachusetts Institute of Technology (MIT) Department of Brain and Cognitive Sciences. You may quit at any time, and you will remain anonymous. Contact the requester with questions or concerns about this experiment.",  # noqa
            comment="freiwald_tsao_identification",  # noqa
            collection_name = 'freiwald_tsao_identification',
            max_assignments=1,
            bucket_name='freiwald_tsao_identification',
            trials_per_hit=trials_per_hit,
            html_data=html_data,
            frame_height_pix=1200,
            othersrc = ['../../mturkutils/lib/dltk.js', '../../mturkutils/lib/dltkexpr.js', '../../mturkutils/lib/dltkrsvp.js'],
            additionalrules=additionalrules,
            log_prefix='freiwald_tsao_identification_'
            )

    # -- create trials
    exp.createTrials(sampling='without-replacement', verbose=1)
    n_total_trials = len(exp._trials['imgFiles'])
    assert n_total_trials == 220 * mult, n_total_trials

    # -- in each HIT, the followings will be repeated 4 times to
    # estimate "quality" of data

    ind_repeats = repeat_inds * REPEATS_PER_QE_IMG
    rng = np.random.RandomState(0)
    rng.shuffle(ind_repeats)
    trials_qe = {e: [copy.deepcopy(exp._trials[e][r]) for r in ind_repeats]
            for e in exp._trials}

    ind_learn = practice_inds
    goodids = [meta[i]['id'] for i in ind_learn]

    trials_lrn = {}
    for e in exp._trials:
        trials_lrn[e] = []
        got = []
        for _ind, r in enumerate(exp._trials[e]):
            if exp._trials['imgData'][_ind]['Sample']['id'] in goodids and exp._trials['imgData'][_ind]['Sample']['id'] not in got :
                trials_lrn[e].append(copy.deepcopy(r))
                got.append(exp._trials['imgData'][_ind]['Sample']['id'])
    assert len(trials_lrn['imgData']) == len(goodids), len(trials_lrn['imgData'])

    offsets = np.arange(ACTUAL_TRIALS_PER_HIT - 1, -1, -ACTUAL_TRIALS_PER_HIT / float(len(ind_repeats))
            ).round().astype('int')

    print(len(offsets), offsets)

    print('a', len(exp._trials['imgFiles']))
    n_hits_floor = n_total_trials / ACTUAL_TRIALS_PER_HIT
    n_applied_hits = 0
    for i_trial_begin in xrange((n_hits_floor - 1) * ACTUAL_TRIALS_PER_HIT,
            -1, -ACTUAL_TRIALS_PER_HIT):
        for k in trials_qe:
            for i, offset in enumerate(offsets):
                exp._trials[k].insert(i_trial_begin + offset, trials_qe[k][i])
        n_applied_hits += 1

    print('b', len(exp._trials['imgFiles']))
    for j in range(n_applied_hits):
        for k in trials_lrn:
            for i in range(len(ind_learn)):
                exp._trials[k].insert(trials_per_hit * j, trials_lrn[k][i])

    print('c', len(exp._trials['imgFiles']))

    #shuffle test on a per-hit basis
    for j in range(n_applied_hits):
        rng = np.random.RandomState(seed=j)
        perm = rng.permutation(28)
        for i in range(trials_per_hit * j, min(trials_per_hit * (j+1), len(exp._trials['imgFiles']))):
            f = copy.deepcopy(exp._trials['imgFiles'][i])
            t = copy.deepcopy(exp._trials['imgData'][i])
            f[1] = [f[1][_j] for _j in perm]
            exp._trials['imgFiles'][i] = f
            t['Test'] = [t['Test'][_j] for _j in perm]
            exp._trials['imgData'][i] = t
            l = copy.deepcopy(exp._trials['labels'][i])
            exp._trials['labels'][i] = [l[_j] for _j in perm]


    print('d', len(exp._trials['imgFiles']))

    print '** n_applied_hits =', n_applied_hits
    print '** len for each in _trials =', \
            {e: len(exp._trials[e]) for e in exp._trials}


    _K = LEARNING_PERIOD + REPEATS_PER_QE_IMG * len(repeat_inds)
    # -- sanity check
    assert n_hits_floor == n_applied_hits == mult * n_hits_from_data, (n_total_trials, ACTUAL_TRIALS_PER_HIT, n_hits_floor, n_applied_hits, mult, n_hits_from_data)
    assert len(exp._trials['imgFiles']) == mult * (len(meta) + n_hits_from_data * _K),  (len(exp._trials['imgFiles']), mult,  (len(meta) + n_hits_from_data * _K), len(meta), n_hits_from_data, _K)

    return exp, html_data
Example #16
0
def get_exp(sandbox=True, dummy_upload=True):

    dataset = hvm.HvMWithDot()
    base_url = 'https://canonical_images.s3.amazonaws.com/'
    fields = dataset.meta.dtype.names
    meta = dataset.meta
    names = ['RedPixelOnCanonical', 'RedPixelOffCanonical']
    response_images = [{'urls': [base_url + name + '.png' for name in names],
                       'meta': [{field: meta[i][field] for field in fields} for i in [4020, 5060]],
                       'labels': ['The red pixel was on the object',
                                 'The red pixel was not on the object']}]
    preproc = {'crop': None,
               'crop_rand': None,
               'dtype': 'float32',
               'mask': None,
               'mode': 'RGB',
               'normalize': False,
               'resize_to': (256, 256),
               'seed': 0}
    cat_dict = "{true: 'Dot is on the object', false:'Dot is not on the object'}"

    with open(path.join(path.dirname(__file__), 'tutorial_html'), 'r') as tutorial_html_file:
        tutorial_html = tutorial_html_file.read()

    additionalrules = [{'old': 'LEARNINGPERIODNUMBER',
                        'new':  str(10)},
                       {'old': 'OBJTYPE',
                        'new': 'Figure/ground task'},
                       {'old': 'TUTORIAL_HTML',
                        'new': tutorial_html},
                       {'old': 'CATDICT',
                        'new': cat_dict},
                       {'old': 'METAFIELD',
                        'new': "'dot_on'"}]

    variation_level = 'V6'
    disallowed_images = [meta[i]['filename'] for i in [4020, 5060]]
    query = lambda x: x['var'] == variation_level and (x['filename'] not in disallowed_images)
    html_data = {
            'response_images': response_images,
            'combs': [[True, False]],
            'num_trials': 1190,
            'meta_field': 'dot_on',
            'meta': meta,
            'urls': dataset.publish_images(range(meta.shape[0]), preproc, 'hvm_figure_ground', dummy_upload),
            'meta_query': query
    }
    exp = MatchToSampleFromDLDataExperiment(
            htmlsrc='general_two_way.html',
            htmldst='hvm_figure_ground%05d.html',
            sandbox=sandbox,
            title='Report whether the dot is on the object',
            reward=0.35,
            duration=1500,
            keywords=['neuroscience', 'psychology', 'experiment', 'object recognition'],  # noqa
            description="***You may complete as many HITs in this group as you want*** Complete a visual object recognition task where you report dots are on an object or not. We expect this HIT to take about 10 minutes or less, though you must finish in under 25 minutes.  By completing this HIT, you understand that you are participating in an experiment for the Massachusetts Institute of Technology (MIT) Department of Brain and Cognitive Sciences. You may quit at any time, and you will remain anonymous. Contact the requester with questions or concerns about this experiment.",  # noqa
            comment="hvm_figure_ground",  # noqa
            collection_name= 'hvm_figure_ground_2',
            max_assignments=10,
            bucket_name='hvm_figure_ground_2',
            trials_per_hit=170,  # 150 + 8x4 repeats
            html_data=html_data,
            frame_height_pix=1200,
            othersrc = ['../../lib/dltk.js', '../../lib/dltkexpr.js', '../../lib/dltkrsvp.js'],
            additionalrules=additionalrules
            )

    # -- create trials
    exp.createTrials(sampling='with-replacement', verbose=1)

    return exp, html_data
Example #17
0
def get_exp(sandbox=True,
            selected_basic_objs=SELECTED_BASIC_OBJS,
            debug=False):
    meta, _, meta_chairs = get_meta()
    chairs = np.unique(meta_chairs['obj'])
    combs = [(o1, o2) for o1 in selected_basic_objs for o2 in chairs] + \
            [e for e in itertools.combinations(chairs, 2)]
    urls = [get_url(e['obj'], e['id']) for e in meta]
    response_images = [{
        'urls': [get_url_labeled_resp_img(o1),
                 get_url_labeled_resp_img(o2)],
        'meta': [{
            'obj': o
        } for o in [o1, o2]],
        'labels': [o1, o2]
    } for o1, o2 in combs]

    html_data = {
        'response_images': response_images,
        'combs': combs,
        'num_trials': 125 * 2,
        'meta_field': 'obj',
        'meta': meta,
        'urls': urls,
        'shuffle_test': True,
    }

    exp = MatchToSampleFromDLDataExperiment(
        htmlsrc='web/chairs_subord.html',
        htmldst='chairs_subord_n%05d.html',
        sandbox=sandbox,
        title='Object recognition --- report what you see',
        reward=0.15,
        duration=1600,
        keywords=[
            'neuroscience', 'psychology', 'experiment', 'object recognition'
        ],  # noqa
        description=
        "***You may complete as many HITs in this group as you want*** Complete a visual object recognition task where you report the identity of objects you see. We expect this HIT to take about 5 minutes or less, though you must finish in under 25 minutes.  By completing this HIT, you understand that you are participating in an experiment for the Massachusetts Institute of Technology (MIT) Department of Brain and Cognitive Sciences. You may quit at any time, and you will remain anonymous. Contact the requester with questions or concerns about this experiment.",  # noqa
        comment=
        "objectome_chairs_subord_v3.  30 chairs and 30 non-chairs",  # noqa
        collection_name='objectome_chairs_subord_v3',
        max_assignments=1,
        bucket_name='objectome_chairs_subord_v3',
        trials_per_hit=ACTUAL_TRIALS_PER_HIT + 16,  # 100 + 4x4 repeats
        tmpdir='tmp',
        html_data=html_data,
        frame_height_pix=1200,
        othersrc=[
            '../../mturkutils/lib/dltk.js', '../../mturkutils/lib/dltkexpr.js',
            '../../mturkutils/lib/dltkrsvp.js'
        ],  # noqa
        set_destination=True,
    )

    # -- create trials
    exp.createTrials(sampling='with-replacement', verbose=1)
    if debug:
        return exp

    # repeat last 50 presentations twice to make the entire trials
    # well aligned as multiples of 100
    exp._trials['imgFiles'].extend(exp._trials['imgFiles'][-50:])
    exp._trials['imgData'].extend(exp._trials['imgData'][-50:])
    exp._trials['labels'].extend(exp._trials['labels'][-50:])

    n_total_trials = len(exp._trials['imgFiles'])
    assert n_total_trials == (30 * 29 / 2 + 30 * 30) * 250 + 50

    # -- in each HIT, the followings will be repeated 4 times to
    # estimate "quality" of data
    # the choice of v--- this array below is arbitrary
    ind_repeats = [1, 10, 22, 24] * REPEATS_PER_QE_IMG
    rng = np.random.RandomState(0)
    rng.shuffle(ind_repeats)
    trials_qe = {
        e: [copy.deepcopy(exp._trials[e][r]) for r in ind_repeats]
        for e in exp._trials
    }

    # -- flip answer choices of some repeated images
    n_qe = len(trials_qe['imgFiles'])
    print '** n_qe =', n_qe
    # if True, flip
    flips = [True] * (n_qe / 2) + [False] * (n_qe - n_qe / 2)
    assert len(flips) == n_qe
    rng.shuffle(flips)
    assert len(trials_qe.keys()) == 4

    for i, flip in enumerate(flips):
        if not flip:
            continue
        trials_qe['imgFiles'][i][1].reverse()
        trials_qe['labels'][i].reverse()
        trials_qe['imgData'][i]['Test'].reverse()

    # -- actual application
    offsets = np.arange(ACTUAL_TRIALS_PER_HIT - 3, -1, -ACTUAL_TRIALS_PER_HIT /
                        float(len(ind_repeats))).round().astype('int')
    assert len(offsets) == len(offsets)

    n_hits_floor = n_total_trials / ACTUAL_TRIALS_PER_HIT
    n_applied_hits = 0
    for i_trial_begin in xrange((n_hits_floor - 1) * ACTUAL_TRIALS_PER_HIT, -1,
                                -ACTUAL_TRIALS_PER_HIT):
        for k in trials_qe:
            for i, offset in enumerate(offsets):
                exp._trials[k].insert(i_trial_begin + offset, trials_qe[k][i])
                # exp._trials[k].insert(i_trial_begin + offset, 'test')
        n_applied_hits += 1

    print '** n_applied_hits =', n_applied_hits
    print '** len for each in _trials =', \
        {e: len(exp._trials[e]) for e in exp._trials}

    # -- sanity check
    assert 3338 == n_applied_hits
    assert len(exp._trials['imgFiles']) == 3338 * (100 + 16)
    s_ref_labels = [tuple(e) for e in trials_qe['labels']]
    print '**', s_ref_labels
    offsets2 = np.arange(16)[::-1] + offsets
    ibie = zip(range(0, 3338 * 116, 116), range(3339 * 116, 116))
    assert all([[(e1, e2)
                 for e1, e2 in np.array(exp._trials['labels'][ib:ie])[offsets2]
                 ] == s_ref_labels for ib, ie in ibie])

    # -- drop unneeded, potentially abusable stuffs
    del exp._trials['imgData']
    del exp._trials['meta_field']
    print '** Finished creating trials.'

    return exp, html_data
Example #18
0
def get_exp(sandbox=True, debug=False):
    meta = get_meta()
    combs = [e for e in itertools.combinations(np.unique(meta['obj']), 2)]
    urls = [get_url(e['obj'], e['id']) for e in meta]
    response_images = [{
        'urls': [get_url_labeled_resp_img(o1), get_url_labeled_resp_img(o2)],
        'meta': [{'obj': o} for o in [o1, o2]],
        'labels': [o1, o2]
        } for o1, o2 in combs]

    html_data = {
        'combs': combs,
        'response_images': response_images,
        'num_trials': 125 * 2,
        'meta_field': 'obj',
        'meta': meta,
        'urls': urls,
        'shuffle_test': True,
    }

    exp = MatchToSampleFromDLDataExperiment(
            htmlsrc='web/objectome_64objs_v2.html',
            htmldst='objectome_64objs_v2_n%05d.html',
            sandbox=sandbox,
            title='Object recognition --- report what you see',
            reward=0.25,
            duration=1600,
            keywords=['neuroscience', 'psychology', 'experiment', 'object recognition'],  # noqa
            description="***You may complete as many HITs in this group as you want*** Complete a visual object recognition task where you report the identity of objects you see. We expect this HIT to take about 10 minutes or less, though you must finish in under 25 minutes.  By completing this HIT, you understand that you are participating in an experiment for the Massachusetts Institute of Technology (MIT) Department of Brain and Cognitive Sciences. You may quit at any time, and you will remain anonymous. Contact the requester with questions or concerns about this experiment.",  # noqa
            comment='objectome_64objs_v2',
            collection_name='objectome_64objs_v2',
            max_assignments=1,
            bucket_name='objectome_64objs_v2',
            trials_per_hit=ACTUAL_TRIALS_PER_HIT + 24,  # 150 + 6x4 repeats
            html_data=html_data,
            tmpdir='tmp',
            frame_height_pix=1200,
            othersrc=['../../mturkutils/lib/dltk.js', '../../mturkutils/lib/dltkexpr.js', '../../mturkutils/lib/dltkrsvp.js'],   # noqa
            )

    # -- create trials
    exp.createTrials(sampling='with-replacement', verbose=1)
    n_total_trials = len(exp._trials['imgFiles'])
    assert n_total_trials == (64 * 63 / 2) * 250
    if debug:
        return exp, html_data

    # -- in each HIT, the followings will be repeated 4 times to
    # estimate "quality" of data
    ind_repeats = [0, 4, 47, 9, 17, 18] * REPEATS_PER_QE_IMG
    rng = np.random.RandomState(0)
    rng.shuffle(ind_repeats)
    trials_qe = {e: [copy.deepcopy(exp._trials[e][r]) for r in ind_repeats]
                 for e in exp._trials}

    # -- flip answer choices of some repeated images
    n_qe = len(trials_qe['labels'])
    # if True, flip
    flips = [True] * (n_qe / 2) + [False] * (n_qe - n_qe / 2)
    assert len(flips) == n_qe
    rng.shuffle(flips)
    assert len(trials_qe.keys()) == 4

    for i, flip in enumerate(flips):
        if not flip:
            continue
        trials_qe['imgFiles'][i][1].reverse()
        trials_qe['labels'][i].reverse()
        trials_qe['imgData'][i]['Test'].reverse()

    # -- actual application
    offsets = np.arange(
        ACTUAL_TRIALS_PER_HIT - 3, -1,
        -ACTUAL_TRIALS_PER_HIT / float(len(ind_repeats))
    ).round().astype('int')
    assert len(offsets) == len(offsets)

    n_hits_floor = n_total_trials / ACTUAL_TRIALS_PER_HIT
    n_applied_hits = 0
    for i_trial_begin in xrange((n_hits_floor - 1) * ACTUAL_TRIALS_PER_HIT,
                                -1, -ACTUAL_TRIALS_PER_HIT):
        for k in trials_qe:
            for i, offset in enumerate(offsets):
                exp._trials[k].insert(i_trial_begin + offset, trials_qe[k][i])
                # exp._trials[k].insert(i_trial_begin + offset, 'test')
        n_applied_hits += 1

    print '** n_applied_hits =', n_applied_hits
    print '** len for each in _trials =', \
        {e: len(exp._trials[e]) for e in exp._trials}

    # -- sanity check
    assert 3360 == n_applied_hits, n_applied_hits
    assert len(exp._trials['imgFiles']) == 3360 * 174
    s_ref_labels = [tuple(e) for e in trials_qe['labels']]
    offsets2 = np.arange(24)[::-1] + offsets
    ibie = zip(range(0, 3360 * 174, 174), range(174, 3361 * 174, 174))
    assert all(
        [[(e1, e2) for e1, e2 in
         np.array(exp._trials['labels'][ib:ie])[offsets2]] == s_ref_labels
         for ib, ie in ibie])

    # -- drop unneeded, potentially abusable stuffs
    del exp._trials['imgData']
    print '** Finished creating trials.'

    return exp, html_data