def test_defgrad_rotate_square(self):
        """
        Subtract an rotated and un-rotated square.
        Two cases:

        * Rotate 45deg and subtract, should give a non-zero diffence
        * Rotate 90 deg and subtract, should give a zero difference
        """
        tol = 1e-4
        square = np.zeros((200, 200), dtype=np.float)
        square[75:125, 75:125] = 1.

        theta = np.pi / 4.
        F_rot_45 = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]], dtype=np.float64)
        image_deformer_45 = vlab.imageDeformer_from_defGrad(F_rot_45)
        image_rotated_45 = image_deformer_45(square, steps=2)[1]

        if np.abs(np.sum(np.abs(square - image_rotated_45))) < 1.:
            self.fail("The rotated image is the same as the un-rotated one")

        theta = np.pi / 2.
        F_rot_90 = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]], dtype=np.float64)
        image_deformer_90 = vlab.imageDeformer_from_defGrad(F_rot_90)
        image_rotated_90 = image_deformer_90(square, steps=2)[1]

        if np.abs(np.sum(np.abs(square - image_rotated_90))) > tol:
            self.fail("The image rotated by 90deg should be identical to the un-rotated image")
Example #2
0
    def __run_DIC_defgrad__(self, F, element, x1=150, x2=350, y1=150, y2=350, n_elx=3, n_ely=3):
        """
        Function that imposes a deformation gradient upon a reference image, runs a full DIC job and compares
        the resulting deformation gradient to the imposed gradient. This is done for all points within the elements.

        :param F: Deformation gradient
        :param element: Finite element definitions
        :return True if test is passed
        """

        # Default settings
        n_frames = 10
        rel_tol_F = 1e-2

        downsampler = Downsampler(image_shape=self.img_shape, factor=1, fill=1.0, pixel_offset_stddev=0.0)

        image_deformer = vlab.imageDeformer_from_defGrad(F)

        noise_injector = lambda img: img

        image_reader = SyntheticImageGenerator(speckle_image=self.image, image_deformer=image_deformer,
                                               downsampler=downsampler, noise_injector=noise_injector, n=n_frames)
        images_stack = dic.IO.ImageStack(image_reader)

        # Initialize a mesh instance
        if isinstance(element, dic.elements.BSplineSurface):
            mesher_tool = dic.mesh.Mesher(element.degree_e, element.degree_n,type="spline")

        elif isinstance(element,dic.elements.Q4):
            mesher_tool = dic.mesh.Mesher(type="Q4")

        else:
            raise TypeError("Invalid element received")

        myMesh = mesher_tool.mesh(images_stack, x1, x2, y1, y2, n_elx, n_ely, GUI=False)

        # Generate mesh

        RefUpdate = [5]

        settings = muDIC.solver.correlate.DICInput(myMesh, images_stack, RefUpdate)
        settings.tol = 1e-6
        # Run DIC

        analysis = dic.solver.DICAnalysis(settings)

        dic_results = analysis.run()

        n_nodes, n_frames_dic = np.shape(dic_results.xnodesT)

        if n_frames != n_frames_dic:
            return False

        results = dic.Fields(dic_results, seed=21)

        max_error, mean_error = self.__calculate_DIC_error__(F, results.F())

        return max_error <= rel_tol_F
    def test_defgrad_dilate_square_by_biaxial_tension(self):
        """
        Deforms a image with a square by a given amount and checks the area of the square
        """
        tol = 1e-4
        square = np.zeros((200, 200), dtype=np.float)
        square[75:125, 75:125] = 1.

        undeformed_hole_area = np.sum(square)

        F = np.array([[2., .0], [0., 2.0]], dtype=np.float64)

        image_deformer = vlab.imageDeformer_from_defGrad(F)

        enlarged_hole = image_deformer(square, steps=2)[1]
        enlarged_hole_area = np.sum(enlarged_hole)
        area_increase = enlarged_hole_area / undeformed_hole_area
        if np.abs(area_increase - np.linalg.det(F)) > tol:
            self.fail("Deformed area should be %f but was %f" % (np.linalg.det(F), area_increase))
Example #4
0
    def test__pass_through_user_img(self):
        F = np.eye(2, dtype=np.float)
        image_deformer = vlab.imageDeformer_from_defGrad(F)

        downsampler = vlab.Downsampler(image_shape=self.img_shape,
                                       factor=1,
                                       fill=1.,
                                       pixel_offset_stddev=0.0)

        noise_injector = lambda img: img

        virtualTest = vlab.SyntheticImageGenerator(
            speckle_image=self.image,
            image_deformer=image_deformer,
            downsampler=downsampler,
            noise_injector=noise_injector,
            n=10)

        deviation = np.abs(virtualTest(1) - self.image)

        if np.max(deviation) > self.tol:
            self.fail(
                "Image changed value or orientation. Largest error is%f" %
                np.max(deviation))
Example #5
0
# Define the image you want to analyse
n_imgs = 2
image_shape = (500, 500)
downsample_factor = 4
super_image_shape = tuple(dim * downsample_factor for dim in image_shape)

# Make a speckle image
speckle_image = vlab.rosta_speckle(super_image_shape,
                                   dot_size=4,
                                   density=0.5,
                                   smoothness=2.0)

# Make an image deformed
F = np.array([[1.01, 0], [0.01, 1.0]])
image_deformer = vlab.imageDeformer_from_defGrad(F)

# Make an image down-sampler including downscaling, fill-factor and sensor grid irregularities
downsampler = vlab.Downsampler(image_shape=super_image_shape,
                               factor=downsample_factor,
                               fill=.95,
                               pixel_offset_stddev=0.05)

# Make a noise injector producing 2% gaussian additive noise
noise_injector = vlab.noise_injector("gaussian", sigma=.02)

# Make an synthetic image generation pipeline
image_generator = vlab.SyntheticImageGenerator(speckle_image=speckle_image,
                                               image_deformer=image_deformer,
                                               downsampler=downsampler,
                                               noise_injector=noise_injector,