try: sys.path.append(os.path.join(Path(os.getcwd()).parent, 'lib')) from mnist import load_mnist import multilayernet as network except ImportError: print('Library Module Can Not Fount') # 1. load training / test data (train_x, train_t), (test_x, test_t) = load_mnist(normalize=True, flatten=True, one_hot_label=True) # 2. initialize network network.initialize(input_size=train_x.shape[1], hidden_size=[50], output_size=train_t.shape[1]) # 3. batch by 3 train_x_batch = train_x[:3] train_t_batch = train_t[:3] # 4. gradient gradient_numerical = network.numerical_gradient_net(train_x_batch, train_t_batch) gradient_backpropagation = network.backpropagation_gradient_net( train_x_batch, train_t_batch) print(gradient_backpropagation) # 5.mean of modules
import sys from pathlib import Path try: sys.path.append(os.path.join(Path(os.getcwd()).parent, 'lib')) from mnist import load_mnist import multilayernet as network except ImportError: print('Library Module Can Not Found') # 1. load train/test data (train_x, train_t), (test_x, test_t) = load_mnist(normalize=True, flatten=True, one_hot_label=True) # 2. load params dataset trained params_file = os.path.join(os.getcwd(), 'model', 'twolayer_params.pkl') params = None with open(params_file, 'rb') as f: params = pickle.load(f) # 3. model frame network.initialize(input_size=train_x.shape[1], hidden_size=[50, 100], output_size=train_t.shape[1], init_params=params) train_accuracy = network.accuracy(train_x, train_t) test_accuracy = network.accuracy(test_x, test_t) print(train_accuracy, test_accuracy)