Example #1
0
    def __getitem__(self, idx):
        sample_info = self.annotation_db[idx]
        sample_info = self.preprocess_sample_info(sample_info)
        current_sample = Sample()

        # breaking change from VQA2Dataset: load question_id
        current_sample.question_id = torch.tensor(sample_info["question_id"],
                                                  dtype=torch.int)

        if isinstance(sample_info["image_id"], int):
            current_sample.image_id = str(sample_info["image_id"])
        else:
            current_sample.image_id = sample_info["image_id"]
        if self._use_features is True:
            features = self.features_db[idx]
            current_sample.update(features)

        current_sample = self.add_sample_details(sample_info, current_sample)
        current_sample = self.add_answer_info(sample_info, current_sample)

        # only the 'max_features' key is needed
        # pop other keys to minimize data loading overhead
        if hasattr(current_sample, "image_info_0"):
            for k in list(current_sample.image_info_0):
                if k != "max_features":
                    current_sample.image_info_0.pop(k)
        if hasattr(current_sample, "image_info_1"):
            for k in list(current_sample.image_info_1):
                if k != "max_features":
                    current_sample.image_info_1.pop(k)

        return current_sample
Example #2
0
    def __getitem__(self, idx):
        sample_info = self.annotation_db[idx]
        current_sample = Sample()

        text_processor_argument = {"text": sample_info["question_str"]}
        processed_question = self.text_processor(text_processor_argument)
        current_sample.text = processed_question["text"]
        if "input_ids" in processed_question:
            current_sample.update(processed_question)

        current_sample.question_id = torch.tensor(
            sample_info["question_id"], dtype=torch.int
        )

        if isinstance(sample_info["image_id"], int):
            current_sample.image_id = torch.tensor(
                sample_info["image_id"], dtype=torch.int
            )
        else:
            current_sample.image_id = sample_info["image_id"]

        if self._use_features is True:
            features = self.features_db[idx]
            if hasattr(self, "transformer_bbox_processor"):
                features["image_info_0"] = self.transformer_bbox_processor(
                    features["image_info_0"]
                )
            current_sample.update(features)

        # Depending on whether we are using soft copy this can add
        # dynamic answer space
        current_sample = self.add_answer_info(sample_info, current_sample)
        return current_sample
Example #3
0
    def load_item(self, idx):
        sample_info = self.annotation_db[idx]
        current_sample = Sample()

        if "question_tokens" in sample_info:
            text_processor_argument = {
                "tokens": sample_info["question_tokens"],
                "text": sample_info["question_str"],
            }
        else:
            text_processor_argument = {"text": sample_info["question"]}

        processed_question = self.text_processor(text_processor_argument)

        current_sample.text = processed_question["text"]
        if "input_ids" in processed_question:
            current_sample.update(processed_question)

        current_sample.question_id = torch.tensor(sample_info["question_id"],
                                                  dtype=torch.int)

        if isinstance(sample_info["image_id"], int):
            current_sample.image_id = torch.tensor(sample_info["image_id"],
                                                   dtype=torch.int)
        else:
            current_sample.image_id = sample_info["image_id"]

        if "question_tokens" in sample_info:
            current_sample.text_len = torch.tensor(len(
                sample_info["question_tokens"]),
                                                   dtype=torch.int)

        if self._use_features:
            features = self.features_db[idx]
            if hasattr(self, "transformer_bbox_processor"):
                features["image_info_0"] = self.transformer_bbox_processor(
                    features["image_info_0"])
            current_sample.update(features)
        else:
            image_path = sample_info["image_name"] + ".jpg"
            current_sample.image = self.image_db.from_path(
                image_path)["images"][0]

        # Add details for OCR like OCR bbox, vectors, tokens here
        current_sample = self.add_ocr_details(sample_info, current_sample)
        # Depending on whether we are using soft copy this can add
        # dynamic answer space
        current_sample = self.add_answer_info(sample_info, current_sample)
        return current_sample
Example #4
0
    def __getitem__(self, idx: int) -> Sample:
        sample_info = self.annotation_db[idx]
        current_sample = Sample()
        processed_caption = self.masked_token_processor({
            "text_a":
            sample_info["caption"],
            "text_b":
            "",
            "is_correct":
            True
        })
        current_sample.update(processed_caption)
        current_sample.image_id = sample_info["image_id"]
        current_sample.feature_path = sample_info["feature_path"]

        # Get the image features
        if self._use_features:
            features = self.features_db[idx]
            image_info_0 = features["image_info_0"]
            if image_info_0 and "image_id" in image_info_0.keys():
                image_info_0["feature_path"] = image_info_0["image_id"]
                image_info_0.pop("image_id")
            current_sample.update(features)

        return current_sample
Example #5
0
    def load_item(self, idx):
        sample_info = self.annotation_db[idx]
        sample_info = self.preprocess_sample_info(sample_info)
        current_sample = Sample()

        if self._dataset_type != "test":
            text_processor_argument = {"tokens": sample_info["caption_tokens"]}
            processed_caption = self.text_processor(text_processor_argument)
            current_sample.text = processed_caption["text"]
            current_sample.caption_id = torch.tensor(sample_info["caption_id"],
                                                     dtype=torch.int)
            current_sample.caption_len = torch.tensor(len(
                sample_info["caption_tokens"]),
                                                      dtype=torch.int)

        current_sample.image_id = object_to_byte_tensor(
            sample_info["image_id"])

        if self._use_features:
            features = self.features_db[idx]
            current_sample.update(features)
        else:
            image_path = str(sample_info["image_name"]) + ".jpg"
            current_sample.image = self.image_db.from_path(
                image_path)["images"][0]

        # Add reference captions to sample
        current_sample = self.add_reference_caption(sample_info,
                                                    current_sample)

        return current_sample
Example #6
0
    def load_item(self, idx):
        sample_info = self.annotation_db[idx]
        current_sample = Sample()

        processed_caption = self.text_processor(
            {"text": sample_info["captions"][0]})
        current_sample.text = processed_caption["text"]
        current_sample.caption_len = torch.tensor(len(
            processed_caption["text"]),
                                                  dtype=torch.int)

        if isinstance(sample_info["image_id"], int):
            current_sample.image_id = torch.tensor(sample_info["image_id"],
                                                   dtype=torch.int)
        else:
            current_sample.image_id = sample_info["image_id"]

        if self._use_features is True:
            features = self.features_db[idx]
            current_sample.update(features)

        current_sample.answers = torch.stack([processed_caption["text"]])

        return current_sample