def main(arg, min_edge_distance=0.5, max_edge_distance=1.5): dataset_param = arg2dataset_param(arg[0]) model_param = arg2model_param(arg[1]) test_dataset_param = arg2dataset_param(arg[2]) layer_num = None if len(arg) <= 3 else int(arg[3]) dataset_param.size = 100000 dataset_param.min_num_node = 4 dataset_param.num_num_node = 30 test_dataset_param.size = 1000 test_dataset_param.min_num_node = 4 test_dataset_param.num_num_node = 30 test_dataset_param.min_edge_distance = min_edge_distance test_dataset_param.max_edge_distance = max_edge_distance metric_name_list = get_metric_names(test_dataset_param.dataset_name) test_model(dataset_param, model_param, test_dataset_param, batch_size=max( min( int(16 * 1000 / test_dataset_param.min_num_node * 10 / (layer_num or model_param.layer_num)), 50), 1), metric_name_list=metric_name_list, layer_num=layer_num)
def main(arg): dataset_param = arg2dataset_param(arg[0]) model_param = arg2model_param(arg[1]) test_dataset_param = arg2dataset_param(arg[2]) layer_num = int(arg[3]) model_path = arg[4] print(model_path) dataset_param.size = 100000 dataset_param.min_num_node = 4 dataset_param.num_num_node = 30 test_dataset_param.size = 1000 metric_name_list = get_metric_names(test_dataset_param.dataset_name) test_model(model_path, dataset_param, model_param, test_dataset_param, batch_size=max(min(int(16*1000/test_dataset_param.min_num_node *10/(layer_num or model_param.layer_num)), 50), 1), metric_name_list=metric_name_list, layer_num=layer_num)
def main(args): test_dataset_param = arg2dataset_param(args.test_dataset_param) test_dataset_param.size = 1000 if not args.metric: metric_name_list = get_metric_names(test_dataset_param.dataset_name) else: metric_name_list = args.metric best_parameters(test_dataset_param, metric_name_list=metric_name_list, keys=args.key, no_keys=args.no_key)
def main(arg): dataset_param = arg2dataset_param(arg[0]) model_param = arg2model_param(arg[1]) resume_flag = len(arg) > 2 dataset_param.size = 100000 dataset_param.min_num_node = 4 dataset_param.num_num_node = 30 general_param = get_general_param() general_param.save_freq = int(general_param.save_freq*10000/dataset_param.size) general_param.epoch_num = int(general_param.epoch_num*10000*2/dataset_param.size) general_param.resume_flag = resume_flag train_model(dataset_param, model_param, general_param)