def check_generalized_BAC_CAB_formulas(): Print_Function() g4d = Ga('a b c d') (a,b,c,d) = g4d.mv() print 'g_{ij} =',g4d.g print '\\bm{a|(b*c)} =',a|(b*c) print '\\bm{a|(b^c)} =',a|(b^c) print '\\bm{a|(b^c^d)} =',a|(b^c^d) print '\\bm{a|(b^c)+c|(a^b)+b|(c^a)} =',(a|(b^c))+(c|(a^b))+(b|(c^a)) print '\\bm{a*(b^c)-b*(a^c)+c*(a^b)} =',a*(b^c)-b*(a^c)+c*(a^b) print '\\bm{a*(b^c^d)-b*(a^c^d)+c*(a^b^d)-d*(a^b^c)} =',a*(b^c^d)-b*(a^c^d)+c*(a^b^d)-d*(a^b^c) print '\\bm{(a^b)|(c^d)} =',(a^b)|(c^d) print '\\bm{((a^b)|c)|d} =',((a^b)|c)|d print '\\bm{(a^b)\\times (c^d)} =',com(a^b,c^d) return
def check_generalized_BAC_CAB_formulas(): Print_Function() g5d = Ga('a b c d e') (a, b, c, d, e) = g5d.mv() print 'g_{ij} =\n', g5d.g print 'a|(b*c) =', a | (b * c) print 'a|(b^c) =', a | (b ^ c) print 'a|(b^c^d) =', a | (b ^ c ^ d) print 'a|(b^c)+c|(a^b)+b|(c^a) =', (a | ( b ^ c)) + (c | (a ^ b)) + (b | (c ^ a)) print 'a*(b^c)-b*(a^c)+c*(a^b) =',a*(b^c)-b*(a^c)+c*(a^b) print 'a*(b^c^d)-b*(a^c^d)+c*(a^b^d)-d*(a^b^c) =',a*(b^c^d)-b*(a^c^d)+c*(a^b^d)-d*(a^b^c) print '(a^b)|(c^d) =',(a^b)|(c^d) print '((a^b)|c)|d =',((a^b)|c)|d print '(a^b)x(c^d) =',com(a^b,c^d) print '(a|(b^c))|(d^e) =',(a|(b^c))|(d^e) return
def check_generalized_BAC_CAB_formulas(): Print_Function() g5d = Ga('a b c d e') (a, b, c, d, e) = g5d.mv() print('g_{ij} =\n', g5d.g) print('a|(b*c) =', a | (b * c)) print('a|(b^c) =', a | (b ^ c)) print('a|(b^c^d) =', a | (b ^ c ^ d)) print('a|(b^c)+c|(a^b)+b|(c^a) =', (a | ( b ^ c)) + (c | (a ^ b)) + (b | (c ^ a))) print('a*(b^c)-b*(a^c)+c*(a^b) =',a*(b^c)-b*(a^c)+c*(a^b)) print('a*(b^c^d)-b*(a^c^d)+c*(a^b^d)-d*(a^b^c) =',a*(b^c^d)-b*(a^c^d)+c*(a^b^d)-d*(a^b^c)) print('(a^b)|(c^d) =',(a^b)|(c^d)) print('((a^b)|c)|d =',((a^b)|c)|d) print('(a^b)x(c^d) =',com(a^b,c^d)) print('(a|(b^c))|(d^e) =',(a|(b^c))|(d^e)) return
def main(): Format() (g3d,ex,ey,ez) = Ga.build('e*x|y|z') A = g3d.mv('A','mv') print r'\bm{A} =',A A.Fmt(2,r'\bm{A}') A.Fmt(3,r'\bm{A}') X = (x,y,z) = symbols('x y z',real=True) o3d = Ga('e_x e_y e_z',g=[1,1,1],coords=X) (ex,ey,ez) = o3d.mv() f = o3d.mv('f','scalar',f=True) A = o3d.mv('A','vector',f=True) B = o3d.mv('B','bivector',f=True) print r'\bm{A} =',A print r'\bm{B} =',B print 'grad*f =',o3d.grad*f print r'grad|\bm{A} =',o3d.grad|A print r'grad*\bm{A} =',o3d.grad*A print r'-I*(grad^\bm{A}) =',-o3d.i*(o3d.grad^A) print r'grad*\bm{B} =',o3d.grad*B print r'grad^\bm{B} =',o3d.grad^B print r'grad|\bm{B} =',o3d.grad|B g4d = Ga('a b c d') (a,b,c,d) = g4d.mv() print 'g_{ij} =',g4d.g print '\\bm{a|(b*c)} =',a|(b*c) print '\\bm{a|(b^c)} =',a|(b^c) print '\\bm{a|(b^c^d)} =',a|(b^c^d) print '\\bm{a|(b^c)+c|(a^b)+b|(c^a)} =',(a|(b^c))+(c|(a^b))+(b|(c^a)) print '\\bm{a*(b^c)-b*(a^c)+c*(a^b)} =',a*(b^c)-b*(a^c)+c*(a^b) print '\\bm{a*(b^c^d)-b*(a^c^d)+c*(a^b^d)-d*(a^b^c)} =',a*(b^c^d)-b*(a^c^d)+c*(a^b^d)-d*(a^b^c) print '\\bm{(a^b)|(c^d)} =',(a^b)|(c^d) print '\\bm{((a^b)|c)|d} =',((a^b)|c)|d print '\\bm{(a^b)\\times (c^d)} =',com(a^b,c^d) g = '1 # #,'+ \ '# 1 #,'+ \ '# # 1' ng3d = Ga('e1 e2 e3',g=g) (e1,e2,e3) = ng3d.mv() E = e1^e2^e3 Esq = (E*E).scalar() print 'E =',E print '%E^{2} =',Esq Esq_inv = 1/Esq E1 = (e2^e3)*E E2 = (-1)*(e1^e3)*E E3 = (e1^e2)*E print 'E1 = (e2^e3)*E =',E1 print 'E2 =-(e1^e3)*E =',E2 print 'E3 = (e1^e2)*E =',E3 print 'E1|e2 =',(E1|e2).expand() print 'E1|e3 =',(E1|e3).expand() print 'E2|e1 =',(E2|e1).expand() print 'E2|e3 =',(E2|e3).expand() print 'E3|e1 =',(E3|e1).expand() print 'E3|e2 =',(E3|e2).expand() w = ((E1|e1).expand()).scalar() Esq = expand(Esq) print '%(E1\\cdot e1)/E^{2} =',simplify(w/Esq) w = ((E2|e2).expand()).scalar() print '%(E2\\cdot e2)/E^{2} =',simplify(w/Esq) w = ((E3|e3).expand()).scalar() print '%(E3\\cdot e3)/E^{2} =',simplify(w/Esq) X = (r,th,phi) = symbols('r theta phi') s3d = Ga('e_r e_theta e_phi',g=[1,r**2,r**2*sin(th)**2],coords=X,norm=True) (er,eth,ephi) = s3d.mv() f = s3d.mv('f','scalar',f=True) A = s3d.mv('A','vector',f=True) B = s3d.mv('B','bivector',f=True) print 'A =',A print 'B =',B print 'grad*f =',s3d.grad*f print 'grad|A =',s3d.grad|A print '-I*(grad^A) =',-s3d.i*(s3d.grad^A) print 'grad^B =',s3d.grad^B coords = symbols('t x y z') m4d = Ga('gamma*t|x|y|z',g=[1,-1,-1,-1],coords=coords) (g0,g1,g2,g3) = m4d.mv() I = m4d.i B = m4d.mv('B','vector',f=True) E = m4d.mv('E','vector',f=True) B.set_coef(1,0,0) E.set_coef(1,0,0) B *= g0 E *= g0 J = m4d.mv('J','vector',f=True) F = E+I*B print 'B = \\bm{B\\gamma_{t}} =',B print 'E = \\bm{E\\gamma_{t}} =',E print 'F = E+IB =',F print 'J =',J gradF = m4d.grad*F gradF.Fmt(3,'grad*F') print 'grad*F = J' (gradF.get_grade(1)-J).Fmt(3,'%\\grade{\\nabla F}_{1} -J = 0') (gradF.get_grade(3)).Fmt(3,'%\\grade{\\nabla F}_{3} = 0') (alpha,beta,gamma) = symbols('alpha beta gamma') (x,t,xp,tp) = symbols("x t x' t'") m2d = Ga('gamma*t|x',g=[1,-1]) (g0,g1) = m2d.mv() R = cosh(alpha/2)+sinh(alpha/2)*(g0^g1) X = t*g0+x*g1 Xp = tp*g0+xp*g1 print 'R =',R print r"#%t\bm{\gamma_{t}}+x\bm{\gamma_{x}} = t'\bm{\gamma'_{t}}+x'\bm{\gamma'_{x}} = R\lp t'\bm{\gamma_{t}}+x'\bm{\gamma_{x}}\rp R^{\dagger}" Xpp = R*Xp*R.rev() Xpp = Xpp.collect() Xpp = Xpp.trigsimp() print r"%t\bm{\gamma_{t}}+x\bm{\gamma_{x}} =",Xpp Xpp = Xpp.subs({sinh(alpha):gamma*beta,cosh(alpha):gamma}) print r'%\f{\sinh}{\alpha} = \gamma\beta' print r'%\f{\cosh}{\alpha} = \gamma' print r"%t\bm{\gamma_{t}}+x\bm{\gamma_{x}} =",Xpp.collect() coords = symbols('t x y z') m4d = Ga('gamma*t|x|y|z',g=[1,-1,-1,-1],coords=coords) (g0,g1,g2,g3) = m4d.mv() I = m4d.i (m,e) = symbols('m e') psi = m4d.mv('psi','spinor',f=True) A = m4d.mv('A','vector',f=True) sig_z = g3*g0 print '\\bm{A} =',A print '\\bm{\\psi} =',psi dirac_eq = (m4d.grad*psi)*I*sig_z-e*A*psi-m*psi*g0 dirac_eq.simplify() dirac_eq.Fmt(3,r'\nabla \bm{\psi} I \sigma_{z}-e\bm{A}\bm{\psi}-m\bm{\psi}\gamma_{t} = 0') xpdf() return
def main(): Format() (g3d, ex, ey, ez) = Ga.build('e*x|y|z') A = g3d.mv('A', 'mv') print r'\bm{A} =', A A.Fmt(2, r'\bm{A}') A.Fmt(3, r'\bm{A}') X = (x, y, z) = symbols('x y z', real=True) o3d = Ga('e_x e_y e_z', g=[1, 1, 1], coords=X) (ex, ey, ez) = o3d.mv() f = o3d.mv('f', 'scalar', f=True) A = o3d.mv('A', 'vector', f=True) B = o3d.mv('B', 'bivector', f=True) print r'\bm{A} =', A print r'\bm{B} =', B print 'grad*f =', o3d.grad * f print r'grad|\bm{A} =', o3d.grad | A print r'grad*\bm{A} =', o3d.grad * A print r'-I*(grad^\bm{A}) =', -o3d.i * (o3d.grad ^ A) print r'grad*\bm{B} =', o3d.grad * B print r'grad^\bm{B} =', o3d.grad ^ B print r'grad|\bm{B} =', o3d.grad | B g4d = Ga('a b c d') (a, b, c, d) = g4d.mv() print 'g_{ij} =', g4d.g print '\\bm{a|(b*c)} =', a | (b * c) print '\\bm{a|(b^c)} =', a | (b ^ c) print '\\bm{a|(b^c^d)} =', a | (b ^ c ^ d) print '\\bm{a|(b^c)+c|(a^b)+b|(c^a)} =', (a | (b ^ c)) + (c | (a ^ b)) + (b | (c ^ a)) print '\\bm{a*(b^c)-b*(a^c)+c*(a^b)} =', a * (b ^ c) - b * (a ^ c) + c * ( a ^ b) print '\\bm{a*(b^c^d)-b*(a^c^d)+c*(a^b^d)-d*(a^b^c)} =', a * ( b ^ c ^ d) - b * (a ^ c ^ d) + c * (a ^ b ^ d) - d * (a ^ b ^ c) print '\\bm{(a^b)|(c^d)} =', (a ^ b) | (c ^ d) print '\\bm{((a^b)|c)|d} =', ((a ^ b) | c) | d print '\\bm{(a^b)\\times (c^d)} =', com(a ^ b, c ^ d) g = '1 # #,'+ \ '# 1 #,'+ \ '# # 1' ng3d = Ga('e1 e2 e3', g=g) (e1, e2, e3) = ng3d.mv() E = e1 ^ e2 ^ e3 Esq = (E * E).scalar() print 'E =', E print '%E^{2} =', Esq Esq_inv = 1 / Esq E1 = (e2 ^ e3) * E E2 = (-1) * (e1 ^ e3) * E E3 = (e1 ^ e2) * E print 'E1 = (e2^e3)*E =', E1 print 'E2 =-(e1^e3)*E =', E2 print 'E3 = (e1^e2)*E =', E3 print 'E1|e2 =', (E1 | e2).expand() print 'E1|e3 =', (E1 | e3).expand() print 'E2|e1 =', (E2 | e1).expand() print 'E2|e3 =', (E2 | e3).expand() print 'E3|e1 =', (E3 | e1).expand() print 'E3|e2 =', (E3 | e2).expand() w = ((E1 | e1).expand()).scalar() Esq = expand(Esq) print '%(E1\\cdot e1)/E^{2} =', simplify(w / Esq) w = ((E2 | e2).expand()).scalar() print '%(E2\\cdot e2)/E^{2} =', simplify(w / Esq) w = ((E3 | e3).expand()).scalar() print '%(E3\\cdot e3)/E^{2} =', simplify(w / Esq) X = (r, th, phi) = symbols('r theta phi') s3d = Ga('e_r e_theta e_phi', g=[1, r**2, r**2 * sin(th)**2], coords=X, norm=True) (er, eth, ephi) = s3d.mv() f = s3d.mv('f', 'scalar', f=True) A = s3d.mv('A', 'vector', f=True) B = s3d.mv('B', 'bivector', f=True) print 'A =', A print 'B =', B print 'grad*f =', s3d.grad * f print 'grad|A =', s3d.grad | A print '-I*(grad^A) =', -s3d.i * (s3d.grad ^ A) print 'grad^B =', s3d.grad ^ B coords = symbols('t x y z') m4d = Ga('gamma*t|x|y|z', g=[1, -1, -1, -1], coords=coords) (g0, g1, g2, g3) = m4d.mv() I = m4d.i B = m4d.mv('B', 'vector', f=True) E = m4d.mv('E', 'vector', f=True) B.set_coef(1, 0, 0) E.set_coef(1, 0, 0) B *= g0 E *= g0 J = m4d.mv('J', 'vector', f=True) F = E + I * B print 'B = \\bm{B\\gamma_{t}} =', B print 'E = \\bm{E\\gamma_{t}} =', E print 'F = E+IB =', F print 'J =', J gradF = m4d.grad * F gradF.Fmt(3, 'grad*F') print 'grad*F = J' (gradF.get_grade(1) - J).Fmt(3, '%\\grade{\\nabla F}_{1} -J = 0') (gradF.get_grade(3)).Fmt(3, '%\\grade{\\nabla F}_{3} = 0') (alpha, beta, gamma) = symbols('alpha beta gamma') (x, t, xp, tp) = symbols("x t x' t'") m2d = Ga('gamma*t|x', g=[1, -1]) (g0, g1) = m2d.mv() R = cosh(alpha / 2) + sinh(alpha / 2) * (g0 ^ g1) X = t * g0 + x * g1 Xp = tp * g0 + xp * g1 print 'R =', R print r"#%t\bm{\gamma_{t}}+x\bm{\gamma_{x}} = t'\bm{\gamma'_{t}}+x'\bm{\gamma'_{x}} = R\lp t'\bm{\gamma_{t}}+x'\bm{\gamma_{x}}\rp R^{\dagger}" Xpp = R * Xp * R.rev() Xpp = Xpp.collect() Xpp = Xpp.trigsimp() print r"%t\bm{\gamma_{t}}+x\bm{\gamma_{x}} =", Xpp Xpp = Xpp.subs({sinh(alpha): gamma * beta, cosh(alpha): gamma}) print r'%\f{\sinh}{\alpha} = \gamma\beta' print r'%\f{\cosh}{\alpha} = \gamma' print r"%t\bm{\gamma_{t}}+x\bm{\gamma_{x}} =", Xpp.collect() coords = symbols('t x y z') m4d = Ga('gamma*t|x|y|z', g=[1, -1, -1, -1], coords=coords) (g0, g1, g2, g3) = m4d.mv() I = m4d.i (m, e) = symbols('m e') psi = m4d.mv('psi', 'spinor', f=True) A = m4d.mv('A', 'vector', f=True) sig_z = g3 * g0 print '\\bm{A} =', A print '\\bm{\\psi} =', psi dirac_eq = (m4d.grad * psi) * I * sig_z - e * A * psi - m * psi * g0 dirac_eq.simplify() dirac_eq.Fmt( 3, r'\nabla \bm{\psi} I \sigma_{z}-e\bm{A}\bm{\psi}-m\bm{\psi}\gamma_{t} = 0' ) xpdf() return