def __init__(self, length_scale=1.0, sigma_f=1.0, numerator=3.0, **kwargs): """Initialize a Squared Exponential kernel instance. Parameters ---------- length_scale : float or numpy.ndarray, optional the characteristic length-scale (or length-scales) of the phenomenon under investigation. (Defaults to 1.0) sigma_f : float, optional Signal standard deviation. (Defaults to 1.0) numerator : float, optional the numerator of parameter ni of Matern covariance functions. Currently only numerator=3.0 and numerator=5.0 are implemented. (Defaults to 3.0) """ # init base class first NumpyKernel.__init__(self, **kwargs) self.length_scale = length_scale self.sigma_f = sigma_f if numerator == 3.0 or numerator == 5.0: self.numerator = numerator else: raise NotImplementedError
def __init__(self, length_scale=1.0, sigma_f=1.0, **kwargs): """Initialize a Squared Exponential kernel instance. Parameters ---------- length_scale : float or numpy.ndarray, optional the characteristic length-scale (or length-scales) of the phenomenon under investigation. (Defaults to 1.0) sigma_f : float, optional Signal standard deviation. (Defaults to 1.0) """ # init base class first NumpyKernel.__init__(self, **kwargs) self.length_scale = length_scale self.sigma_f = sigma_f
def __init__(self, length_scale=1.0, sigma_f=1.0, alpha=0.5, **kwargs): """Initialize a Squared Exponential kernel instance. Parameters ---------- length_scale : float or numpy.ndarray the characteristic length-scale (or length-scales) of the phenomenon under investigation. (Defaults to 1.0) sigma_f : float Signal standard deviation. (Defaults to 1.0) alpha : float The parameter of the RQ functions family. (Defaults to 2.0) """ # init base class first NumpyKernel.__init__(self, **kwargs) self.length_scale = length_scale self.sigma_f = sigma_f self.alpha = alpha
def __init__(self, *args, **kwargs): # for docstring holder NumpyKernel.__init__(self, *args, **kwargs)