def __init__(self, scaling=True, reflection=True, reduction=True, oblique=False, oblique_rcond=-1, **kwargs): """Initialize the ProcrusteanMapper :Parameters: scaling: bool Scale data for the transformation (no longer rigid body transformation) reflection: bool Allow for the data to be reflected (so it might not be a rotation). Effective only for non-oblique transformations reduction: bool If true, it is allowed to map into lower-dimensional space. Forward transformation might be suboptimal then and reverse transformation might not recover all original variance oblique: bool Either to allow non-orthogonal transformation -- might heavily overfit the data if there is less samples than dimensions. Use `oblique_rcond`. oblique_rcond: float Cutoff for 'small' singular values to regularize the inverse. See :class:`~numpy.linalg.lstsq` for more information. """ ProjectionMapper.__init__(self, **kwargs) self._scaling = scaling """Either to determine the scaling factor""" self._reduction = reduction self._reflection = reflection self._oblique = oblique self._oblique_rcond = oblique_rcond self._scale = None """Estimated scale"""
def selectOut(self, outIds): """Choose a subset of SVD components (and remove all others).""" # handle ElementSelector operating on SV (base class has no idea about) # XXX think about more generic interface, where some 'measure' is assigned # per each projection dimension, like in _sv in case of SVD. # May be selector could be parametrized with an instance + attribute as literal # so later on it could extract necessary values? if isinstance(self._selector, ElementSelector): ProjectionMapper.selectOut(self, self._selector(self._sv)) else: ProjectionMapper.selectOut(self, outIds)
def __init__(self, baselinelabels=None, **kwargs): """Initialize ZScoreMapper :Parameters: baselinelabels : None or list of int or string Used to compute mean and variance TODO: not in effect now and need to be adherent to all `ProjectionMapper`s """ ProjectionMapper.__init__(self, **kwargs) if baselinelabels is not None: raise NotImplementedError, "Support for baseline labels " \ "is not yet implemented in ZScoreMapper" self.baselinelabels = baselinelabels
def __repr__(self): s = ProjectionMapper.__repr__(self).rstrip(' )') if not s[-1] == '(': s += ', ' s += "scaling=%d, reflection=%d, reduction=%d, " \ "oblique=%s, oblique_rcond=%g)" % \ (self._scaling, self._reflection, self._reduction, self._oblique, self._oblique_rcond) return s
def __init__(self, **kwargs): """Initialize the SVDMapper :Parameters: **kwargs: All keyword arguments are passed to the ProjectionMapper constructor. Note, that for the 'selector' argument this class also supports passing a `ElementSelector` instance, which will be used to determine the to be selected features, based on the singular values of each component. """ ProjectionMapper.__init__(self, **kwargs) self._sv = None """Singular values of the training matrix."""
def __init__(self, transpose=False, **kwargs): ProjectionMapper.__init__(self, **kwargs) self._var = None
def __init__(self, algorithm='cubica', transpose=False, **kwargs): ProjectionMapper.__init__(self, **kwargs) self._algorithm = algorithm self._transpose = transpose