def test_repr(): attr_repr = "SampleAttribute(name='TestAttr', doc='my own test', " \ "value=array([0, 1, 2, 3, 4]), length=None)" sattr = SampleAttribute(name='TestAttr', doc='my own test', value=np.arange(5)) # check precise formal representation ok_(repr(sattr) == attr_repr) # check that it actually works as a Python expression from numpy import array eattr = eval(repr(sattr)) ok_(repr(eattr), attr_repr) # should also work for a simple dataset # Does not work due to bug in numpy: # python -c "from numpy import *; print __version__; r=repr(array(['s', None])); print r; eval(r)" # would give "array([s, None], dtype=object)" without '' around s #ds = datasets['uni2small'] ds = Dataset([[0, 1]], a={'dsa1': 'v1'}, sa={'targets': [0]}, fa={'targets': ['b', 'n']}) ds_repr = repr(ds) cfg_repr = cfg.get('datasets', 'repr', 'full') if cfg_repr == 'full': try: ok_(repr(eval(ds_repr)) == ds_repr) except SyntaxError, e: raise AssertionError, "%r cannot be evaluated" % ds_repr
__docformat__ = 'restructuredtext' import numpy as np import copy from mvpa2.base import externals, cfg, warning from mvpa2.base.collections import SampleAttributesCollection, \ FeatureAttributesCollection, DatasetAttributesCollection from mvpa2.base.types import is_datasetlike from mvpa2.base.dochelpers import _str, _strid if __debug__: from mvpa2.base import debug __REPR_STYLE__ = cfg.get('datasets', 'repr', 'full') if not __REPR_STYLE__ in ('full', 'str'): raise ValueError, "Incorrect value %r for option datasets.repr." \ " Valid are 'full' and 'str'." % __REPR_STYLE__ class AttrDataset(object): """Generic storage class for datasets with multiple attributes. A dataset consists of four pieces. The core is a two-dimensional array that has variables (so-called `features`) in its columns and the associated observations (so-called `samples`) in the rows. In addition a dataset may have any number of attributes for features and samples. Unsurprisingly, these are called 'feature attributes' and 'sample attributes'. Each attribute is a vector of any datatype that contains a value per each item (feature or sample). Both types
# commit hash to be filled in by Git upon export/archive hashfilename = pathjoin(os.path.dirname(__file__), 'COMMIT_HASH') __hash__ = '' if os.path.exists(hashfilename): hashfile = open(hashfilename, 'r') __hash__ = hashfile.read().strip() hashfile.close() # # Data paths # # locate data root -- data might not be installed, but if it is, it should be at # this location pymvpa_dataroot = \ cfg.get('data', 'root', default=pathjoin(os.path.dirname(__file__), 'data')) # locate PyMVPA data database root -- also might not be installed, but if it is, # it should be at this location pymvpa_datadbroot = \ cfg.get('datadb', 'root', default=pathjoin(os.getcwd(), 'datadb')) # # Debugging and optimization # if not __debug__: try: import psyco psyco.profile()
# commit hash to be filled in by Git upon export/archive hashfilename = os.path.join(os.path.dirname(__file__), 'COMMIT_HASH') __hash__ = '' if os.path.exists(hashfilename): hashfile = open(hashfilename, 'r') __hash__ = hashfile.read().strip() hashfile.close() # # Data paths # # locate data root -- data might not be installed, but if it is, it should be at # this location pymvpa_dataroot = \ cfg.get('data', 'root', default=os.path.join(os.path.dirname(__file__), 'data')) # locate PyMVPA data database root -- also might not be installed, but if it is, # it should be at this location pymvpa_datadbroot = \ cfg.get('datadb', 'root', default=os.path.join(os.curdir, 'datadb')) # # Debugging and optimization # if not __debug__: try: import psyco psyco.profile()
__docformat__ = 'restructuredtext' import numpy as np import copy from mvpa2.base import externals, cfg from mvpa2.base.collections import SampleAttributesCollection, \ FeatureAttributesCollection, DatasetAttributesCollection from mvpa2.base.types import is_datasetlike from mvpa2.base.dochelpers import _str, _strid if __debug__: from mvpa2.base import debug __REPR_STYLE__ = cfg.get('datasets', 'repr', 'full') if not __REPR_STYLE__ in ('full', 'str'): raise ValueError, "Incorrect value %r for option datasets.repr." \ " Valid are 'full' and 'str'." % __REPR_STYLE__ class AttrDataset(object): """Generic storage class for datasets with multiple attributes. A dataset consists of four pieces. The core is a two-dimensional array that has variables (so-called `features`) in its columns and the associated observations (so-called `samples`) in the rows. In addition a dataset may have any number of attributes for features and samples. Unsurprisingly, these are called 'feature attributes' and 'sample attributes'. Each attribute is a vector of any datatype
# commit hash to be filled in by Git upon export/archive hashfilename = os.path.join(os.path.dirname(__file__), 'COMMIT_HASH') __hash__ = '' if os.path.exists(hashfilename): hashfile = open(hashfilename, 'r') __hash__ = hashfile.read().strip() hashfile.close() # # Data paths # # locate data root -- data might not be installed, but if it is, it should be at # this location pymvpa_dataroot = \ cfg.get('data', 'root', default=os.path.join(os.path.dirname(__file__), 'data')) # locate PyMVPA data database root -- also might not be installed, but if it is, # it should be at this location pymvpa_datadbroot = \ cfg.get('datadb', 'root', default=os.path.join(os.curdir, 'datadb')) # # Debugging and optimization # if not __debug__: try: import psyco psyco.profile() except ImportError:
# commit hash to be filled in by Git upon export/archive hashfilename = os.path.join(os.path.dirname(__file__), "COMMIT_HASH") __hash__ = "" if os.path.exists(hashfilename): hashfile = open(hashfilename, "r") __hash__ = hashfile.read().strip() hashfile.close() # # Data paths # # locate data root -- data might not be installed, but if it is, it should be at # this location pymvpa_dataroot = cfg.get("data", "root", default=os.path.join(os.path.dirname(__file__), "data")) # locate PyMVPA data database root -- also might not be installed, but if it is, # it should be at this location pymvpa_datadbroot = cfg.get("datadb", "root", default=os.path.join(os.curdir, "datadb")) # # Debugging and optimization # if not __debug__: try: import psyco psyco.profile() except ImportError:
# commit hash to be filled in by Git upon export/archive hashfilename = pathjoin(os.path.dirname(__file__), 'COMMIT_HASH') __hash__ = '' if os.path.exists(hashfilename): hashfile = open(hashfilename, 'r') __hash__ = hashfile.read().strip() hashfile.close() # # Data paths # # locate data root -- data might not be installed, but if it is, it should be at # this location pymvpa_dataroot = \ cfg.get('data', 'root', default=pathjoin(os.path.dirname(__file__), 'data')) # locate PyMVPA data database root -- also might not be installed, but if it is, # it should be at this location pymvpa_datadbroot = \ cfg.get('datadb', 'root', default=pathjoin(os.getcwd(), 'datadb')) # # Debugging and optimization # if not __debug__: try: import psyco psyco.profile() except ImportError:
"""Multi-purpose dataset container with support for attributes.""" __docformat__ = "restructuredtext" import numpy as np import copy from mvpa2.base import externals, cfg, warning from mvpa2.base.collections import SampleAttributesCollection, FeatureAttributesCollection, DatasetAttributesCollection from mvpa2.base.types import is_datasetlike from mvpa2.base.dochelpers import _str, _strid if __debug__: from mvpa2.base import debug __REPR_STYLE__ = cfg.get("datasets", "repr", "full") if not __REPR_STYLE__ in ("full", "str"): raise ValueError, "Incorrect value %r for option datasets.repr." " Valid are 'full' and 'str'." % __REPR_STYLE__ class AttrDataset(object): """Generic storage class for datasets with multiple attributes. A dataset consists of four pieces. The core is a two-dimensional array that has variables (so-called `features`) in its columns and the associated observations (so-called `samples`) in the rows. In addition a dataset may have any number of attributes for features and samples. Unsurprisingly, these are called 'feature attributes' and 'sample attributes'. Each attribute is a vector of any datatype that contains a value per each item (feature or sample). Both types
# BLR from mvpa2.clfs.blr import BLR clfswh += RegressionAsClassifier(BLR(descr="BLR()"), descr="BLR Classifier") #PLR from mvpa2.clfs.plr import PLR clfswh += PLR(descr="PLR()") if externals.exists('scipy'): clfswh += PLR(reduced=0.05, descr="PLR(reduced=0.01)") # SVM stuff if len(clfswh['linear', 'svm']) > 0: linearSVMC = clfswh['linear', 'svm', cfg.get('svm', 'backend', default='libsvm').lower()][0] # "Interesting" classifiers clfswh += \ FeatureSelectionClassifier( linearSVMC.clone(), SensitivityBasedFeatureSelection( SMLRWeights(SMLR(lm=0.1, implementation="C"), postproc=maxofabs_sample()), RangeElementSelector(mode='select')), descr="LinSVM on SMLR(lm=0.1) non-0") _rfeclf = linearSVMC.clone() clfswh += \ FeatureSelectionClassifier( _rfeclf,
from mvpa2.clfs.blr import BLR clfswh += RegressionAsClassifier(BLR(descr="BLR()"), descr="BLR Classifier") #PLR from mvpa2.clfs.plr import PLR clfswh += PLR(descr="PLR()") if externals.exists('scipy'): clfswh += PLR(reduced=0.05, descr="PLR(reduced=0.01)") # SVM stuff if len(clfswh['linear', 'svm']) > 0: linearSVMC = clfswh['linear', 'svm', cfg.get('svm', 'backend', default='libsvm').lower() ][0] # "Interesting" classifiers clfswh += \ FeatureSelectionClassifier( linearSVMC.clone(), SensitivityBasedFeatureSelection( SMLRWeights(SMLR(lm=0.1, implementation="C"), postproc=maxofabs_sample()), RangeElementSelector(mode='select')), descr="LinSVM on SMLR(lm=0.1) non-0") clfswh += \ FeatureSelectionClassifier(
from mvpa2.clfs.blr import BLR clfswh += RegressionAsClassifier(BLR(descr="BLR()"), descr="BLR Classifier") # PLR from mvpa2.clfs.plr import PLR clfswh += PLR(descr="PLR()") if externals.exists("scipy"): clfswh += PLR(reduced=0.05, descr="PLR(reduced=0.01)") # SVM stuff if len(clfswh["linear", "svm"]) > 0: linearSVMC = clfswh["linear", "svm", cfg.get("svm", "backend", default="libsvm").lower()][0] # "Interesting" classifiers clfswh += FeatureSelectionClassifier( linearSVMC.clone(), SensitivityBasedFeatureSelection( SMLRWeights(SMLR(lm=0.1, implementation="C"), postproc=maxofabs_sample()), RangeElementSelector(mode="select"), ), descr="LinSVM on SMLR(lm=0.1) non-0", ) clfswh += FeatureSelectionClassifier( linearSVMC.clone(), SensitivityBasedFeatureSelection( SMLRWeights(SMLR(lm=1.0, implementation="C"), postproc=maxofabs_sample()),