Example #1
0
    def test_correlation(self):
        # data: 20 samples, 80 features
        X = np.random.rand(20, 80)

        C = 1 - one_minus_correlation(X, X)

        # get nsample x nssample correlation matrix
        self.assertTrue(C.shape == (20, 20))
        # diagonal is 1
        self.assertTrue((np.abs(np.diag(C) - 1).mean() < 0.00001).all())

        # now two different
        Y = np.random.rand(5, 80)
        C2 = 1 - one_minus_correlation(X, Y)
        # get nsample x nssample correlation matrix
        self.assertTrue(C2.shape == (20, 5))
        # external validity check -- we are dealing with correlations
        self.assertTrue(C2[10, 2] - np.corrcoef(X[10], Y[2])[0, 1] < 0.000001)
Example #2
0
    def test_correlation(self):
        # data: 20 samples, 80 features
        X = np.random.rand(20, 80)

        C = 1 - one_minus_correlation(X, X)

        # get nsample x nssample correlation matrix
        self.assertTrue(C.shape == (20, 20))
        # diagonal is 1
        self.assertTrue((np.abs(np.diag(C) - 1).mean() < 0.00001).all())

        # now two different
        Y = np.random.rand(5, 80)
        C2 = 1 - one_minus_correlation(X, Y)
        # get nsample x nssample correlation matrix
        self.assertTrue(C2.shape == (20, 5))
        # external validity check -- we are dealing with correlations
        self.assertTrue(C2[10, 2] - np.corrcoef(X[10], Y[2])[0, 1] < 0.000001)