Example #1
0
def test_remove_invariant_as_a_mapper():
    from mvpa2.featsel.helpers import RangeElementSelector
    from mvpa2.featsel.base import StaticFeatureSelection, SensitivityBasedFeatureSelection
    from mvpa2.testing.datasets import datasets
    from mvpa2.datasets.miscfx import remove_invariant_features

    mapper = SensitivityBasedFeatureSelection(
              lambda x: np.std(x, axis=0),
              RangeElementSelector(lower=0, inclusive=False),
              train_analyzer=False,
              auto_train=True)

    ds = datasets['uni2large'].copy()

    ds.a['mapper'] = StaticFeatureSelection(np.arange(ds.nfeatures))
    ds.fa['index'] = np.arange(ds.nfeatures)
    ds.samples[:, [1, 8]] = 10

    ds_out = mapper(ds)

    # Validate that we are getting the same results as remove_invariant_features
    ds_rifs = remove_invariant_features(ds)
    assert_array_equal(ds_out.samples, ds_rifs.samples)
    assert_array_equal(ds_out.fa.index, ds_rifs.fa.index)

    assert_equal(ds_out.fa.index[1], 2)
    assert_equal(ds_out.fa.index[8], 10)
Example #2
0
    def test_union_feature_selection(self):
        # two methods: 5% highes F-scores, non-zero SMLR weights
        fss = [SensitivityBasedFeatureSelection(
                    OneWayAnova(),
                    FractionTailSelector(0.05, mode='select', tail='upper')),
               SensitivityBasedFeatureSelection(
                    SMLRWeights(SMLR(lm=1, implementation="C"),
                                postproc=sumofabs_sample()),
                    RangeElementSelector(mode='select'))]

        fs = CombinedFeatureSelection(fss, method='union')

        od_union = fs(self.dataset)

        self.assertTrue(fs.method == 'union')
        # check output dataset
        self.assertTrue(od_union.nfeatures <= self.dataset.nfeatures)
        # again for intersection
        fs = CombinedFeatureSelection(fss, method='intersection')
        od_intersect = fs(self.dataset)
        assert_true(od_intersect.nfeatures < od_union.nfeatures)
Example #3
0
    def test_feature_selector(self):
        """Test feature selector"""
        # remove 10% weekest
        selector = FractionTailSelector(0.1)
        data = np.array([3.5, 10, 7, 5, -0.4, 0, 0, 2, 10, 9])
        # == rank [4, 5, 6, 7, 0, 3, 2, 9, 1, 8]
        target10 = np.array([0, 1, 2, 3, 5, 6, 7, 8, 9])
        target30 = np.array([0, 1, 2, 3, 7, 8, 9])

        self.assertRaises(UnknownStateError, selector.ca.__getattribute__,
                          'ndiscarded')
        self.assertTrue((selector(data) == target10).all())
        selector.felements = 0.30  # discard 30%
        self.assertTrue(selector.felements == 0.3)
        self.assertTrue((selector(data) == target30).all())
        self.assertTrue(selector.ca.ndiscarded == 3)  # se 3 were discarded

        selector = FixedNElementTailSelector(1)
        #                   0   1   2  3   4    5  6  7  8   9
        data = np.array([3.5, 10, 7, 5, -0.4, 0, 0, 2, 10, 9])
        self.assertTrue((selector(data) == target10).all())

        selector.nelements = 3
        self.assertTrue(selector.nelements == 3)
        self.assertTrue((selector(data) == target30).all())
        self.assertTrue(selector.ca.ndiscarded == 3)

        # test range selector
        # simple range 'above'
        self.assertTrue((RangeElementSelector(lower=0)(data) == \
                         np.array([0,1,2,3,7,8,9])).all())

        self.assertTrue((RangeElementSelector(lower=0,
                                              inclusive=True)(data) == \
                         np.array([0,1,2,3,5,6,7,8,9])).all())

        self.assertTrue((RangeElementSelector(lower=0, mode='discard',
                                              inclusive=True)(data) == \
                         np.array([4])).all())

        # simple range 'below'
        self.assertTrue((RangeElementSelector(upper=2)(data) == \
                         np.array([4,5,6])).all())

        self.assertTrue((RangeElementSelector(upper=2,
                                              inclusive=True)(data) == \
                         np.array([4,5,6,7])).all())

        self.assertTrue((RangeElementSelector(upper=2, mode='discard',
                                              inclusive=True)(data) == \
                         np.array([0,1,2,3,8,9])).all())

        # ranges
        self.assertTrue((RangeElementSelector(lower=2, upper=9)(data) == \
                         np.array([0,2,3])).all())

        self.assertTrue((RangeElementSelector(lower=2, upper=9,
                                              inclusive=True)(data) == \
                         np.array([0,2,3,7,9])).all())

        self.assertTrue((RangeElementSelector(
            upper=2, lower=9, mode='discard',
            inclusive=True)(data) == RangeElementSelector(
                lower=2, upper=9, inclusive=False)(data)).all())

        # non-0 elements -- should be equivalent to np.nonzero()[0]
        self.assertTrue((RangeElementSelector()(data) == \
                         np.nonzero(data)[0]).all())
Example #4
0
        regrswh += [_lasso_lars_ic]
        clfswh += [
            RegressionAsClassifier(_lasso_lars_ic, descr='skl.LassoLarsIC_C()')
        ]

# kNN
clfswh += kNN(k=5, descr="kNN(k=5)")
clfswh += kNN(k=5, voting='majority', descr="kNN(k=5, voting='majority')")

clfswh += \
    FeatureSelectionClassifier(
        kNN(),
        SensitivityBasedFeatureSelection(
           SMLRWeights(SMLR(lm=1.0, implementation="C"),
                       postproc=maxofabs_sample()),
           RangeElementSelector(mode='select')),
        descr="kNN on SMLR(lm=1) non-0")

clfswh += \
    FeatureSelectionClassifier(
        kNN(),
        SensitivityBasedFeatureSelection(
           OneWayAnova(),
           FractionTailSelector(0.05, mode='select', tail='upper')),
        descr="kNN on 5%(ANOVA)")

clfswh += \
    FeatureSelectionClassifier(
        kNN(),
        SensitivityBasedFeatureSelection(
           OneWayAnova(),