Example #1
0
    def test_niml_dset_voxsel(self):
        if not externals.exists('nibabel'):
            return

        # This is actually a bit of an integration test.
        # It tests storing and retrieving searchlight results.
        # Imports are inline here so that it does not mess up the header
        # and makes the other unit tests more modular
        # XXX put this in a separate file?
        from mvpa2.misc.surfing import volgeom, surf_voxel_selection, queryengine
        from mvpa2.measures.searchlight import Searchlight
        from mvpa2.support.nibabel import surf
        from mvpa2.measures.base import Measure
        from mvpa2.datasets.mri import fmri_dataset

        class _Voxel_Count_Measure(Measure):
            # used to check voxel selection results
            is_trained = True

            def __init__(self, dtype, **kwargs):
                Measure.__init__(self, **kwargs)
                self.dtype = dtype

            def _call(self, dset):
                return self.dtype(dset.nfeatures)

        sh = (20, 20, 20)
        vg = volgeom.VolGeom(sh, np.identity(4))

        density = 20

        outer = surf.generate_sphere(density) * 10. + 5
        inner = surf.generate_sphere(density) * 5. + 5

        intermediate = outer * .5 + inner * .5
        xyz = intermediate.vertices

        radius = 50

        sel = surf_voxel_selection.run_voxel_selection(radius, vg, inner,
                                                       outer)
        qe = queryengine.SurfaceVerticesQueryEngine(sel)

        for dtype in (int, float):
            sl = Searchlight(_Voxel_Count_Measure(dtype), queryengine=qe)

            ds = fmri_dataset(vg.get_empty_nifti_image(1))
            r = sl(ds)

            _, fn = tempfile.mkstemp('.niml.dset', 'dset')
            niml_dset.write(fn, r)
            rr = niml_dset.read(fn)

            os.remove(fn)

            assert_array_equal(r.samples, rr.samples)
Example #2
0
    def test_agreement_surface_volume(self):
        '''test agreement between volume-based and surface-based
        searchlights when using euclidean measure'''

        # import runner
        def sum_ds(ds):
            return np.sum(ds)

        radius = 3

        # make a small dataset with a mask
        sh = (10, 10, 10)
        msk = np.zeros(sh)
        for i in xrange(0, sh[0], 2):
            msk[i, :, :] = 1
        vg = volgeom.VolGeom(sh, np.identity(4), mask=msk)

        # make an image
        nt = 6
        img = vg.get_masked_nifti_image(6)
        ds = fmri_dataset(img, mask=msk)

        # run the searchlight
        sl = sphere_searchlight(sum_ds, radius=radius)
        m = sl(ds)

        # now use surface-based searchlight
        v = volsurf.from_volume(ds)
        source_surf = v.intermediate_surface
        node_msk = np.logical_not(np.isnan(source_surf.vertices[:, 0]))

        # check that the mask matches with what we used earlier
        assert_array_equal(msk.ravel() + 0., node_msk.ravel() + 0.)

        source_surf_nodes = np.nonzero(node_msk)[0]

        sel = surf_voxel_selection.voxel_selection(
            v,
            float(radius),
            source_surf=source_surf,
            source_surf_nodes=source_surf_nodes,
            distance_metric='euclidean')

        qe = queryengine.SurfaceVerticesQueryEngine(sel)
        sl = Searchlight(sum_ds, queryengine=qe)
        r = sl(ds)

        # check whether they give the same results
        assert_array_equal(r.samples, m.samples)
Example #3
0
    def test_surf_voxel_selection(self):
        vol_shape = (10, 10, 10)
        vol_affine = np.identity(4)
        vol_affine[0, 0] = vol_affine[1, 1] = vol_affine[2, 2] = 5

        vg = volgeom.VolGeom(vol_shape, vol_affine)

        density = 10

        outer = surf.generate_sphere(density) * 25. + 15
        inner = surf.generate_sphere(density) * 20. + 15

        vs = volsurf.VolSurfMaximalMapping(vg, outer, inner)

        nv = outer.nvertices

        # select under variety of parameters
        # parameters are distance metric (dijkstra or euclidean),
        # radius, and number of searchlight  centers
        params = [('d', 1., 10), ('d', 1., 50), ('d', 1., 100), ('d', 2., 100),
                  ('e', 2., 100), ('d', 2., 100), ('d', 20, 100),
                  ('euclidean', 5, None), ('dijkstra', 10, None)]

        # function that indicates for which parameters the full test is run
        test_full = lambda x: len(x[0]) > 1 or x[2] == 100

        expected_labs = ['grey_matter_position', 'center_distances']

        voxcount = []
        tested_double_features = False
        for param in params:
            distance_metric, radius, ncenters = param
            srcs = range(0, nv, nv // (ncenters or nv))
            sel = surf_voxel_selection.voxel_selection(
                vs,
                radius,
                source_surf_nodes=srcs,
                distance_metric=distance_metric)

            # see how many voxels were selected
            vg = sel.volgeom
            datalin = np.zeros((vg.nvoxels, 1))

            mp = sel
            for k, idxs in mp.iteritems():
                if idxs is not None:
                    datalin[idxs] = 1

            voxcount.append(np.sum(datalin))

            if test_full(param):
                assert_equal(np.sum(datalin), np.sum(sel.get_mask()))

                assert_true(len('%s%r' % (sel, sel)) > 0)

                # see if voxels containing inner and outer
                # nodes were selected
                for sf in [inner, outer]:
                    for k, idxs in mp.iteritems():
                        xyz = np.reshape(sf.vertices[k, :], (1, 3))
                        linidx = vg.xyz2lin(xyz)

                        # only required if xyz is actually within the volume
                        assert_equal(linidx in idxs, vg.contains_lin(linidx))

                # check that it has all the attributes
                labs = sel.aux_keys()

                assert_true(all([lab in labs for lab in expected_labs]))

                if externals.exists('h5py'):
                    # some I/O testing
                    fd, fn = tempfile.mkstemp('.h5py', 'test')
                    os.close(fd)
                    h5save(fn, sel)

                    sel2 = h5load(fn)
                    os.remove(fn)

                    assert_equal(sel, sel2)
                else:
                    sel2 = sel

                # check that mask is OK even after I/O
                assert_array_equal(sel.get_mask(), sel2.get_mask())

                # test I/O with surfaces
                # XXX the @tempfile decorator only supports a single filename
                #     hence this method does not use it
                fd, outerfn = tempfile.mkstemp('outer.asc', 'test')
                os.close(fd)
                fd, innerfn = tempfile.mkstemp('inner.asc', 'test')
                os.close(fd)
                fd, volfn = tempfile.mkstemp('vol.nii', 'test')
                os.close(fd)

                surf.write(outerfn, outer, overwrite=True)
                surf.write(innerfn, inner, overwrite=True)

                img = sel.volgeom.get_empty_nifti_image()
                img.to_filename(volfn)

                sel3 = surf_voxel_selection.run_voxel_selection(
                    radius,
                    volfn,
                    innerfn,
                    outerfn,
                    source_surf_nodes=srcs,
                    distance_metric=distance_metric)

                outer4 = surf.read(outerfn)
                inner4 = surf.read(innerfn)
                vsm4 = vs = volsurf.VolSurfMaximalMapping(vg, inner4, outer4)

                # check that two ways of voxel selection match
                sel4 = surf_voxel_selection.voxel_selection(
                    vsm4,
                    radius,
                    source_surf_nodes=srcs,
                    distance_metric=distance_metric)

                assert_equal(sel3, sel4)

                os.remove(outerfn)
                os.remove(innerfn)
                os.remove(volfn)

                # compare sel3 with other selection results
                # NOTE: which voxels are precisely selected by sel can be quite
                #       off from those in sel3, as writing the surfaces imposes
                #       rounding errors and the sphere is very symmetric, which
                #       means that different neighboring nodes are selected
                #       to select a certain number of voxels.
                sel3cmp_difference_ratio = [(sel, .2), (sel4, 0.)]
                for selcmp, ratio in sel3cmp_difference_ratio:
                    nunion = ndiff = 0

                    for k in selcmp.keys():
                        p = set(sel3.get(k))
                        q = set(selcmp.get(k))
                        nunion += len(p.union(q))
                        ndiff += len(p.symmetric_difference(q))

                    assert_true(float(ndiff) / float(nunion) <= ratio)

                # check searchlight call
                # as of late Aug 2012, this is with the fancy query engine
                # as implemented by Yarik

                mask = sel.get_mask()
                keys = None if ncenters is None else sel.keys()

                dset_data = np.reshape(np.arange(vg.nvoxels), vg.shape)
                dset_img = nb.Nifti1Image(dset_data, vg.affine)
                dset = fmri_dataset(samples=dset_img, mask=mask)

                qe = queryengine.SurfaceVerticesQueryEngine(
                    sel,
                    # you can optionally add additional
                    # information about each near-disk-voxels
                    add_fa=['center_distances', 'grey_matter_position'])

                # test i/o ensuring that when loading it is still trained
                if externals.exists('h5py'):
                    fd, qefn = tempfile.mkstemp('qe.hdf5', 'test')
                    os.close(fd)
                    h5save(qefn, qe)
                    qe = h5load(qefn)
                    os.remove(qefn)

                assert_false('ERROR' in repr(qe))  #  to check if repr works
                voxelcounter = _Voxel_Count_Measure()
                searchlight = Searchlight(
                    voxelcounter,
                    queryengine=qe,
                    roi_ids=keys,
                    nproc=1,
                    enable_ca=['roi_feature_ids', 'roi_center_ids'])
                sl_dset = searchlight(dset)

                selected_count = sl_dset.samples[0, :]
                mp = sel
                for i, k in enumerate(sel.keys()):
                    # check that number of selected voxels matches
                    assert_equal(selected_count[i], len(mp[k]))

                assert_equal(searchlight.ca.roi_center_ids, sel.keys())

                assert_array_equal(sl_dset.fa['center_ids'], qe.ids)

                # check nearest node is *really* the nearest node

                allvx = sel.get_targets()
                intermediate = outer * .5 + inner * .5

                for vx in allvx:
                    nearest = sel.target2nearest_source(vx)

                    xyz = intermediate.vertices[nearest, :]
                    sqsum = np.sum((xyz - intermediate.vertices)**2, 1)

                    idx = np.argmin(sqsum)
                    assert_equal(idx, nearest)

                if not tested_double_features:  # test only once
                    # see if we have multiple features for the same voxel, we would get them all
                    dset1 = dset.copy()
                    dset1.fa['dset'] = [1]
                    dset2 = dset.copy()
                    dset2.fa['dset'] = [2]
                    dset_ = hstack((dset1, dset2), 'drop_nonunique')
                    dset_.sa = dset1.sa
                    # dset_.a.imghdr = dset1.a.imghdr
                    assert_true('imghdr' in dset_.a.keys())
                    assert_equal(dset_.a['imghdr'].value,
                                 dset1.a['imghdr'].value)
                    roi_feature_ids = searchlight.ca.roi_feature_ids
                    sl_dset_ = searchlight(dset_)
                    # and we should get twice the counts
                    assert_array_equal(sl_dset_.samples, sl_dset.samples * 2)

                    # compare old and new roi_feature_ids
                    assert (len(roi_feature_ids) == len(
                        searchlight.ca.roi_feature_ids))
                    nfeatures = dset.nfeatures
                    for old, new in zip(roi_feature_ids,
                                        searchlight.ca.roi_feature_ids):
                        # each new ids should comprise of old ones + (old + nfeatures)
                        # since we hstack'ed two datasets
                        assert_array_equal(
                            np.hstack([(x, x + nfeatures) for x in old]), new)
                    tested_double_features = True

        # check whether number of voxels were selected is as expected
        expected_voxcount = [22, 93, 183, 183, 183, 183, 183, 183, 183]

        assert_equal(voxcount, expected_voxcount)