Example #1
0
    def test_volgeom_masking(self):
        maskstep = 5
        vg = volgeom.VolGeom((2 * maskstep, 2 * maskstep, 2 * maskstep), np.identity(4))

        mask = vg.get_empty_array()
        sh = vg.shape

        # mask a subset of the voxels
        rng = range(0, sh[0], maskstep)
        for i in rng:
            for j in rng:
                for k in rng:
                    mask[i, j, k] = 1

        # make a new volgeom instance
        vg = volgeom.VolGeom(vg.shape, vg.affine, mask)

        data = vg.get_masked_nifti_image(nt=1)
        msk = vg.get_masked_nifti_image()
        dset = fmri_dataset(data, mask=msk)
        vg_dset = volgeom.from_any(dset)

        # ensure that the mask is set properly and
        assert_equal(vg.nvoxels, vg.nvoxels_mask * maskstep ** 3)
        assert_equal(vg_dset, vg)

        dilates = range(0, 8, 2)
        nvoxels_masks = []  # keep track of number of voxels for each size
        for dilate in dilates:
            covers_full_volume = dilate * 2 >= maskstep * 3 ** .5 + 1

            # constr gets values: None, Sphere(0), 2, Sphere(2), ...
            for i, constr in enumerate([Sphere, lambda x:x if x else None]):
                dilater = constr(dilate)

                img_dilated = vg.get_masked_nifti_image(dilate=dilater)
                data = img_dilated.get_data()

                assert_array_equal(data, vg.get_masked_array(dilate=dilater))
                n = np.sum(data)

                # number of voxels in mask is increasing
                assert_true(all(n >= p for p in nvoxels_masks))

                # results should be identical irrespective of constr
                if i == 0:
                    # - first call with this value of dilate: has to be more
                    #   voxels than very previous dilation value, unless the
                    #   full volume is covered - then it can be equal too
                    # - every next call: ensure size matches
                    cmp = lambda x, y:(x >= y if covers_full_volume else x > y)
                    assert_true(all(cmp(n, p) for p in nvoxels_masks))
                    nvoxels_masks.append(n)
                else:
                    # same size as previous call
                    assert_equal(n, nvoxels_masks[-1])

                # if dilate is not None or zero, then it should
                # have selected all the voxels if the radius is big enough
                assert_equal(np.sum(data) == vg.nvoxels, covers_full_volume)
    def test_queryengine_io(self, fn):
        skip_if_no_external('h5py')
        from mvpa2.base.hdf5 import h5save, h5load

        vol_shape = (10, 10, 10, 1)
        vol_affine = np.identity(4)
        vg = volgeom.VolGeom(vol_shape, vol_affine)

        # generate some surfaces,
        # and add some noise to them
        sphere_density = 10
        outer = surf.generate_sphere(sphere_density) * 5 + 8
        inner = surf.generate_sphere(sphere_density) * 3 + 8
        radius = 5.

        add_fa = ['center_distances', 'grey_matter_position']
        qe = disc_surface_queryengine(radius, vg, inner, outer, add_fa=add_fa)
        ds = fmri_dataset(vg.get_masked_nifti_image())

        # the following is not really a strong requirement. XXX remove?
        assert_raises(ValueError, lambda: qe[qe.ids[0]])

        # check that after training it behaves well
        qe.train(ds)
        i = qe.ids[0]
        try:
            m = qe[i]
        except ValueError, e:
            raise AssertionError(
                'Failed to query %r from %r after training on %r. Exception was: %r'
                % (i, qe, ds, e))
Example #3
0
    def test_surface_voxel_query_engine(self):
        vol_shape = (10, 10, 10, 1)
        vol_affine = np.identity(4)
        vol_affine[0, 0] = vol_affine[1, 1] = vol_affine[2, 2] = 5
        vg = volgeom.VolGeom(vol_shape, vol_affine)

        # make the surfaces
        sphere_density = 10

        outer = surf.generate_sphere(sphere_density) * 25. + 15
        inner = surf.generate_sphere(sphere_density) * 20. + 15

        vs = volsurf.VolSurfMaximalMapping(vg, inner, outer)

        radius = 10

        for fallback, expected_nfeatures in ((True, 1000), (False, 183)):
            voxsel = surf_voxel_selection.voxel_selection(vs, radius)
            qe = SurfaceVoxelsQueryEngine(voxsel,
                                          fallback_euclidian_distance=fallback)

            m = _Voxel_Count_Measure()

            sl = Searchlight(m, queryengine=qe)

            data = np.random.normal(size=vol_shape)
            img = nb.Nifti1Image(data, vol_affine)
            ds = fmri_dataset(img)

            sl_map = sl(ds)

            counts = sl_map.samples

            assert_true(np.all(np.logical_and(5 <= counts, counts <= 18)))
            assert_equal(sl_map.nfeatures, expected_nfeatures)
Example #4
0
    def test_h5support(self):
        sh = (20, 20, 20)
        msk = np.zeros(sh)
        for i in xrange(0, sh[0], 2):
            msk[i, :, :] = 1
        vg = volgeom.VolGeom(sh, np.identity(4), mask=msk)

        density = 20

        outer = surf.generate_sphere(density) * 10. + 5
        inner = surf.generate_sphere(density) * 5. + 5

        intermediate = outer * .5 + inner * .5
        xyz = intermediate.vertices

        radius = 50

        backends = ['native', 'hdf5']

        for i, backend in enumerate(backends):
            if backend == 'hdf5' and not externals.exists('h5py'):
                continue

            sel = surf_voxel_selection.run_voxel_selection(
                radius, vg, inner, outer, results_backend=backend)

            if i == 0:
                sel0 = sel
            else:
                assert_equal(sel0, sel)
    def test_volsurf_projections(self):
        white = surf.generate_plane((0, 0, 0), (0, 1, 0), (0, 0, 1), 10, 10)
        pial = white + np.asarray([[1, 0, 0]])

        above = pial + np.asarray([[3, 0, 0]])
        vg = volgeom.VolGeom((10, 10, 10), np.eye(4))
        vs = volsurf.VolSurfMaximalMapping(vg, white, pial)

        dx = pial.vertices - white.vertices

        for s, w in ((white, 0), (pial, 1), (above, 4)):
            xyz = s.vertices
            ws = vs.surf_project_weights(True, xyz)
            delta = vs.surf_unproject_weights_nodewise(ws) - xyz
            assert_array_equal(delta, np.zeros((100, 3)))
            assert_true(np.all(w == ws))

        vs = volsurf.VolSurfMaximalMapping(vg, white, pial, nsteps=2)
        n2vs = vs.get_node2voxels_mapping()
        assert_equal(n2vs, dict((i, {
            i: 0.,
            i + 100: 1.
        }) for i in xrange(100)))

        nd = 17
        ds_mm_expected = np.sum((above.vertices - pial.vertices[nd, :])**2,
                                1)**.5
        ds_mm = vs.coordinates_to_grey_distance_mm(nd, above.vertices)
        assert_array_almost_equal(ds_mm_expected, ds_mm)

        ds_mm_nodewise = vs.coordinates_to_grey_distance_mm(
            True, above.vertices)

        assert_array_equal(ds_mm_nodewise, np.ones((100, )) * 3)
Example #6
0
    def test_surface_minimal_voxel_selection(self):
        # Tests 'minimal' voxel selection.
        # It assumes that 'maximal' voxel selection works (which is tested
        # in other unit tests)
        vol_shape = (10, 10, 10, 1)
        vol_affine = np.identity(4)
        vg = volgeom.VolGeom(vol_shape, vol_affine)

        # generate some surfaces,
        # and add some noise to them
        sphere_density = 10
        nvertices = sphere_density**2 + 2
        noise = np.random.uniform(size=(nvertices, 3))
        outer = surf.generate_sphere(sphere_density) * 5 + 8 + noise
        inner = surf.generate_sphere(sphere_density) * 3 + 8 + noise

        radii = [5., 20., 10]  # note: no fixed radii at the moment

        # Note: a little outside margin is necessary
        # as otherwise there are nodes in the minimal case
        # that have no voxels associated with them

        for radius in radii:
            for output_modality in ('surface', 'volume'):
                for i, nvm in enumerate(('minimal', 'maximal')):
                    qe = disc_surface_queryengine(
                        radius,
                        vg,
                        inner,
                        outer,
                        node_voxel_mapping=nvm,
                        output_modality=output_modality)
                    voxsel = qe.voxsel

                    if i == 0:
                        keys_ = voxsel.keys()
                        voxsel_ = voxsel
                    else:
                        keys = voxsel.keys()
                        # minimal one has a subset
                        assert_equal(keys, keys_)

                        # and the subset is quite overlapping
                        assert_true(len(keys) * .90 < len(keys_))

                        for k in keys_:
                            x = set(voxsel_[k])
                            y = set(voxsel[k])

                            d = set.symmetric_difference(x, y)
                            r = float(len(d)) / 2 / len(x)
                            if type(radius) is float:
                                assert_equal(x - y, set())

                            # decent agreement in any case
                            # between the two sets
                            assert_true(r < .6)
Example #7
0
    def test_niml_dset_voxsel(self):
        if not externals.exists('nibabel'):
            return

        # This is actually a bit of an integration test.
        # It tests storing and retrieving searchlight results.
        # Imports are inline here so that it does not mess up the header
        # and makes the other unit tests more modular
        # XXX put this in a separate file?
        from mvpa2.misc.surfing import volgeom, surf_voxel_selection, queryengine
        from mvpa2.measures.searchlight import Searchlight
        from mvpa2.support.nibabel import surf
        from mvpa2.measures.base import Measure
        from mvpa2.datasets.mri import fmri_dataset

        class _Voxel_Count_Measure(Measure):
            # used to check voxel selection results
            is_trained = True

            def __init__(self, dtype, **kwargs):
                Measure.__init__(self, **kwargs)
                self.dtype = dtype

            def _call(self, dset):
                return self.dtype(dset.nfeatures)

        sh = (20, 20, 20)
        vg = volgeom.VolGeom(sh, np.identity(4))

        density = 20

        outer = surf.generate_sphere(density) * 10. + 5
        inner = surf.generate_sphere(density) * 5. + 5

        intermediate = outer * .5 + inner * .5
        xyz = intermediate.vertices

        radius = 50

        sel = surf_voxel_selection.run_voxel_selection(radius, vg, inner,
                                                       outer)
        qe = queryengine.SurfaceVerticesQueryEngine(sel)

        for dtype in (int, float):
            sl = Searchlight(_Voxel_Count_Measure(dtype), queryengine=qe)

            ds = fmri_dataset(vg.get_empty_nifti_image(1))
            r = sl(ds)

            _, fn = tempfile.mkstemp('.niml.dset', 'dset')
            niml_dset.write(fn, r)
            rr = niml_dset.read(fn)

            os.remove(fn)

            assert_array_equal(r.samples, rr.samples)
Example #8
0
    def test_surface_outside_volume_voxel_selection(self, fn):
        skip_if_no_external('h5py')
        from mvpa2.base.hdf5 import h5save, h5load

        vol_shape = (10, 10, 10, 1)
        vol_affine = np.identity(4)
        vg = volgeom.VolGeom(vol_shape, vol_affine)

        # make surfaces that are far away from all voxels
        # in the volume
        sphere_density = 4
        far = 10000.
        outer = surf.generate_sphere(sphere_density) * 10 + far
        inner = surf.generate_sphere(sphere_density) * 5 + far

        vs = volsurf.VolSurfMaximalMapping(vg, inner, outer)
        radii = [10., 10]  # fixed and variable radii

        outside_node_margins = [0, far, True]
        for outside_node_margin in outside_node_margins:
            for radius in radii:
                selector = lambda: surf_voxel_selection.voxel_selection(vs,
                                                                        radius,
                                                                        outside_node_margin=outside_node_margin)

                if type(radius) is int and outside_node_margin is True:
                    assert_raises(ValueError, selector)
                else:
                    sel = selector()
                    if outside_node_margin is True:
                        # it should have all the keys, but they should
                        # all be empty
                        assert_array_equal(sel.keys(), range(inner.nvertices))
                        for k, v in sel.iteritems():
                            assert_equal(v, [])
                    else:
                        assert_array_equal(sel.keys(), [])

                    if outside_node_margin is True and \
                                    externals.versions['hdf5'] < '1.8.7':
                        raise SkipTest("Versions of hdf5 before 1.8.7 have "
                                       "problems with empty arrays")

                    h5save(fn, sel)
                    sel_copy = h5load(fn)

                    assert_array_equal(sel.keys(), sel_copy.keys())
                    for k in sel.keys():
                        assert_equal(sel[k], sel_copy[k])

                    assert_equal(sel, sel_copy)
Example #9
0
    def test_agreement_surface_volume(self):
        '''test agreement between volume-based and surface-based
        searchlights when using euclidean measure'''

        # import runner
        def sum_ds(ds):
            return np.sum(ds)

        radius = 3

        # make a small dataset with a mask
        sh = (10, 10, 10)
        msk = np.zeros(sh)
        for i in xrange(0, sh[0], 2):
            msk[i, :, :] = 1
        vg = volgeom.VolGeom(sh, np.identity(4), mask=msk)

        # make an image
        nt = 6
        img = vg.get_masked_nifti_image(6)
        ds = fmri_dataset(img, mask=msk)

        # run the searchlight
        sl = sphere_searchlight(sum_ds, radius=radius)
        m = sl(ds)

        # now use surface-based searchlight
        v = volsurf.from_volume(ds)
        source_surf = v.intermediate_surface
        node_msk = np.logical_not(np.isnan(source_surf.vertices[:, 0]))

        # check that the mask matches with what we used earlier
        assert_array_equal(msk.ravel() + 0., node_msk.ravel() + 0.)

        source_surf_nodes = np.nonzero(node_msk)[0]

        sel = surf_voxel_selection.voxel_selection(
            v,
            float(radius),
            source_surf=source_surf,
            source_surf_nodes=source_surf_nodes,
            distance_metric='euclidean')

        qe = queryengine.SurfaceVerticesQueryEngine(sel)
        sl = Searchlight(sum_ds, queryengine=qe)
        r = sl(ds)

        # check whether they give the same results
        assert_array_equal(r.samples, m.samples)
Example #10
0
    def test_volsurf(self):
        vg = volgeom.VolGeom((50, 50, 50), np.identity(4))

        density = 40
        outer = surf.generate_sphere(density) * 25. + 25
        inner = surf.generate_sphere(density) * 20. + 25

        # increasingly select more voxels in 'grey matter'
        steps_start_stop = [(1, .5, .5), (5, .5, .5), (3, .3, .7), (5, .3, .7),
                            (5, 0., 1.), (10, 0., 1.)]

        mp = None
        expected_keys = set(range(density**2 + 2))
        selection_counter = []
        voxel_counter = []
        for sp, sa, so in steps_start_stop:
            vs = volsurf.VolSurfMaximalMapping(vg, outer, inner,
                                               (outer + inner) * .5, sp, sa,
                                               so)

            n2v = vs.get_node2voxels_mapping()

            if mp is None:
                mp = n2v

            assert_equal(expected_keys, set(n2v.keys()))

            counter = 0
            for k, v2pos in n2v.iteritems():
                for v, pos in v2pos.iteritems():
                    # should be close to grey matter

                    assert_true(-1. <= pos <= 2.)
                    counter += 1

            selection_counter.append(counter)
            img = vs.voxel_count_nifti_image()

            voxel_counter.append(np.sum(img.get_data() > 0))

        # hard coded number of expected voxels
        selection_expected = [1602, 1602, 4618, 5298, 7867, 10801]
        assert_equal(selection_counter, selection_expected)

        voxel_expected = [1498, 1498, 4322, 4986, 7391, 10141]
        assert_equal(voxel_counter, voxel_expected)

        # check that string building works
        assert_true(len('%s%r' % (vs, vs)) > 0)
    def test_surface_minimal_lowres_voxel_selection(self, fn):
        vol_shape = (4, 10, 10, 1)
        vol_affine = np.identity(4)
        vg = volgeom.VolGeom(vol_shape, vol_affine)

        # make surfaces that are far away from all voxels
        # in the volume
        sphere_density = 10
        radius = 10

        outer = surf.generate_plane((0, 0, 4), (0, .4, 0), (0, 0, .4), 14, 14)
        inner = outer + 2

        source = surf.generate_plane((0, 0, 4), (0, .8, 0),
                                     (0, 0, .8), 7, 7) + 1

        for i, nvm in enumerate(('minimal', 'minimal_lowres')):
            qe = disc_surface_queryengine(radius,
                                          vg,
                                          inner,
                                          outer,
                                          source,
                                          node_voxel_mapping=nvm)

            voxsel = qe.voxsel
            if i == 0:
                voxsel0 = voxsel
            else:
                assert_equal(voxsel.keys(), voxsel0.keys())
                for k in voxsel.keys():
                    p = voxsel[k]
                    q = voxsel0[k]

                    # require at least 60% agreement
                    delta = set.symmetric_difference(set(p), set(q))
                    assert_true(len(delta) < .8 * (len(p) + len(q)))

            if externals.exists('h5py'):
                from mvpa2.base.hdf5 import h5save, h5load

                h5save(fn, voxsel)
                voxsel_copy = h5load(fn)
                assert_equal(voxsel.keys(), voxsel_copy.keys())

                for id in qe.ids:
                    assert_array_equal(voxsel.get(id), voxsel_copy.get(id))
    def test_minimal_dataset(self):
        vol_shape = (10, 10, 10, 3)
        vol_affine = np.identity(4)
        vg = volgeom.VolGeom(vol_shape, vol_affine)

        data = np.random.normal(size=vol_shape)
        msk = np.ones(vol_shape[:3])
        msk[:, 1:-1:2, :] = 0

        ni_data = nb.Nifti1Image(data, vol_affine)
        ni_msk = nb.Nifti1Image(msk, vol_affine)

        ds = fmri_dataset(ni_data, mask=ni_msk)

        sphere_density = 20
        outer = surf.generate_sphere(sphere_density) * 10. + 5
        inner = surf.generate_sphere(sphere_density) * 7. + 5


        radius = 10
        sel = surf_voxel_selection.run_voxel_selection(radius, ds,
                                                       inner, outer)


        sel_fids = set.union(*(set(sel[k]) for k in sel.keys()))

        ds_vox = map(tuple, ds.fa.voxel_indices)

        vg = sel.volgeom
        sel_vox = map(tuple, vg.lin2ijk(np.asarray(list(sel_fids))))


        fid_mask = np.asarray([v in sel_vox for v in ds_vox])
        assert_array_equal(fid_mask, sel.get_dataset_feature_mask(ds))

        # check if it raises errors
        ni_neg_msk = nb.Nifti1Image(1 - msk, vol_affine)
        neg_ds = fmri_dataset(ni_data, mask=ni_neg_msk) # inverted mask

        assert_raises(ValueError, sel.get_dataset_feature_mask, neg_ds)

        min_ds = sel.get_minimal_dataset(ds)
        assert_array_equal(min_ds.samples, ds[:, fid_mask].samples)
Example #13
0
    def test_volsurf_surf_from_volume(self):
        aff = np.eye(4)
        aff[0, 0] = aff[1, 1] = aff[2, 2] = 3

        sh = (40, 40, 40)

        vg = volgeom.VolGeom(sh, aff)

        p = volsurf.from_volume(vg).intermediate_surface
        q = volsurf.VolumeBasedSurface(vg)

        centers = [0, 10, 10000, (-1, -1, -1), (5, 5, 5)]
        radii = [0, 10, 20, 100]

        for center in centers:
            for radius in radii:
                x = p.circlearound_n2d(center, radius)
                y = q.circlearound_n2d(center, radius)
                assert_equal(x, y)
    def test_surface_voxel_query_engine(self):
        vol_shape = (10, 10, 10, 1)
        vol_affine = np.identity(4)
        vol_affine[0, 0] = vol_affine[1, 1] = vol_affine[2, 2] = 5
        vg = volgeom.VolGeom(vol_shape, vol_affine)

        # make the surfaces
        sphere_density = 10

        outer = surf.generate_sphere(sphere_density) * 25. + 15
        inner = surf.generate_sphere(sphere_density) * 20. + 15

        vs = volsurf.VolSurfMaximalMapping(vg, inner, outer)

        radius = 10

        for fallback, expected_nfeatures in ((True, 1000), (False, 183)):
            voxsel = surf_voxel_selection.voxel_selection(vs, radius)
            qe = SurfaceVoxelsQueryEngine(voxsel,
                                          fallback_euclidean_distance=fallback)

            # test i/o and ensure that the loaded instance is trained
            if externals.exists('h5py'):
                fd, qefn = tempfile.mkstemp('qe.hdf5', 'test')
                os.close(fd)
                h5save(qefn, qe)
                qe = h5load(qefn)
                os.remove(qefn)

            m = _Voxel_Count_Measure()

            sl = Searchlight(m, queryengine=qe)

            data = np.random.normal(size=vol_shape)
            img = nb.Nifti1Image(data, vol_affine)
            ds = fmri_dataset(img)

            sl_map = sl(ds)

            counts = sl_map.samples

            assert_true(np.all(np.logical_and(5 <= counts, counts <= 18)))
            assert_equal(sl_map.nfeatures, expected_nfeatures)
Example #15
0
    def test_surf_voxel_selection(self):
        vol_shape = (10, 10, 10)
        vol_affine = np.identity(4)
        vol_affine[0, 0] = vol_affine[1, 1] = vol_affine[2, 2] = 5

        vg = volgeom.VolGeom(vol_shape, vol_affine)

        density = 10

        outer = surf.generate_sphere(density) * 25. + 15
        inner = surf.generate_sphere(density) * 20. + 15

        vs = volsurf.VolSurfMaximalMapping(vg, outer, inner)

        nv = outer.nvertices

        # select under variety of parameters
        # parameters are distance metric (dijkstra or euclidean),
        # radius, and number of searchlight  centers
        params = [('d', 1., 10), ('d', 1., 50), ('d', 1., 100), ('d', 2., 100),
                  ('e', 2., 100), ('d', 2., 100), ('d', 20, 100),
                  ('euclidean', 5, None), ('dijkstra', 10, None)]

        # function that indicates for which parameters the full test is run
        test_full = lambda x: len(x[0]) > 1 or x[2] == 100

        expected_labs = ['grey_matter_position', 'center_distances']

        voxcount = []
        tested_double_features = False
        for param in params:
            distance_metric, radius, ncenters = param
            srcs = range(0, nv, nv // (ncenters or nv))
            sel = surf_voxel_selection.voxel_selection(
                vs,
                radius,
                source_surf_nodes=srcs,
                distance_metric=distance_metric)

            # see how many voxels were selected
            vg = sel.volgeom
            datalin = np.zeros((vg.nvoxels, 1))

            mp = sel
            for k, idxs in mp.iteritems():
                if idxs is not None:
                    datalin[idxs] = 1

            voxcount.append(np.sum(datalin))

            if test_full(param):
                assert_equal(np.sum(datalin), np.sum(sel.get_mask()))

                assert_true(len('%s%r' % (sel, sel)) > 0)

                # see if voxels containing inner and outer
                # nodes were selected
                for sf in [inner, outer]:
                    for k, idxs in mp.iteritems():
                        xyz = np.reshape(sf.vertices[k, :], (1, 3))
                        linidx = vg.xyz2lin(xyz)

                        # only required if xyz is actually within the volume
                        assert_equal(linidx in idxs, vg.contains_lin(linidx))

                # check that it has all the attributes
                labs = sel.aux_keys()

                assert_true(all([lab in labs for lab in expected_labs]))

                if externals.exists('h5py'):
                    # some I/O testing
                    fd, fn = tempfile.mkstemp('.h5py', 'test')
                    os.close(fd)
                    h5save(fn, sel)

                    sel2 = h5load(fn)
                    os.remove(fn)

                    assert_equal(sel, sel2)
                else:
                    sel2 = sel

                # check that mask is OK even after I/O
                assert_array_equal(sel.get_mask(), sel2.get_mask())

                # test I/O with surfaces
                # XXX the @tempfile decorator only supports a single filename
                #     hence this method does not use it
                fd, outerfn = tempfile.mkstemp('outer.asc', 'test')
                os.close(fd)
                fd, innerfn = tempfile.mkstemp('inner.asc', 'test')
                os.close(fd)
                fd, volfn = tempfile.mkstemp('vol.nii', 'test')
                os.close(fd)

                surf.write(outerfn, outer, overwrite=True)
                surf.write(innerfn, inner, overwrite=True)

                img = sel.volgeom.get_empty_nifti_image()
                img.to_filename(volfn)

                sel3 = surf_voxel_selection.run_voxel_selection(
                    radius,
                    volfn,
                    innerfn,
                    outerfn,
                    source_surf_nodes=srcs,
                    distance_metric=distance_metric)

                outer4 = surf.read(outerfn)
                inner4 = surf.read(innerfn)
                vsm4 = vs = volsurf.VolSurfMaximalMapping(vg, inner4, outer4)

                # check that two ways of voxel selection match
                sel4 = surf_voxel_selection.voxel_selection(
                    vsm4,
                    radius,
                    source_surf_nodes=srcs,
                    distance_metric=distance_metric)

                assert_equal(sel3, sel4)

                os.remove(outerfn)
                os.remove(innerfn)
                os.remove(volfn)

                # compare sel3 with other selection results
                # NOTE: which voxels are precisely selected by sel can be quite
                #       off from those in sel3, as writing the surfaces imposes
                #       rounding errors and the sphere is very symmetric, which
                #       means that different neighboring nodes are selected
                #       to select a certain number of voxels.
                sel3cmp_difference_ratio = [(sel, .2), (sel4, 0.)]
                for selcmp, ratio in sel3cmp_difference_ratio:
                    nunion = ndiff = 0

                    for k in selcmp.keys():
                        p = set(sel3.get(k))
                        q = set(selcmp.get(k))
                        nunion += len(p.union(q))
                        ndiff += len(p.symmetric_difference(q))

                    assert_true(float(ndiff) / float(nunion) <= ratio)

                # check searchlight call
                # as of late Aug 2012, this is with the fancy query engine
                # as implemented by Yarik

                mask = sel.get_mask()
                keys = None if ncenters is None else sel.keys()

                dset_data = np.reshape(np.arange(vg.nvoxels), vg.shape)
                dset_img = nb.Nifti1Image(dset_data, vg.affine)
                dset = fmri_dataset(samples=dset_img, mask=mask)

                qe = queryengine.SurfaceVerticesQueryEngine(
                    sel,
                    # you can optionally add additional
                    # information about each near-disk-voxels
                    add_fa=['center_distances', 'grey_matter_position'])

                # test i/o ensuring that when loading it is still trained
                if externals.exists('h5py'):
                    fd, qefn = tempfile.mkstemp('qe.hdf5', 'test')
                    os.close(fd)
                    h5save(qefn, qe)
                    qe = h5load(qefn)
                    os.remove(qefn)

                assert_false('ERROR' in repr(qe))  #  to check if repr works
                voxelcounter = _Voxel_Count_Measure()
                searchlight = Searchlight(
                    voxelcounter,
                    queryengine=qe,
                    roi_ids=keys,
                    nproc=1,
                    enable_ca=['roi_feature_ids', 'roi_center_ids'])
                sl_dset = searchlight(dset)

                selected_count = sl_dset.samples[0, :]
                mp = sel
                for i, k in enumerate(sel.keys()):
                    # check that number of selected voxels matches
                    assert_equal(selected_count[i], len(mp[k]))

                assert_equal(searchlight.ca.roi_center_ids, sel.keys())

                assert_array_equal(sl_dset.fa['center_ids'], qe.ids)

                # check nearest node is *really* the nearest node

                allvx = sel.get_targets()
                intermediate = outer * .5 + inner * .5

                for vx in allvx:
                    nearest = sel.target2nearest_source(vx)

                    xyz = intermediate.vertices[nearest, :]
                    sqsum = np.sum((xyz - intermediate.vertices)**2, 1)

                    idx = np.argmin(sqsum)
                    assert_equal(idx, nearest)

                if not tested_double_features:  # test only once
                    # see if we have multiple features for the same voxel, we would get them all
                    dset1 = dset.copy()
                    dset1.fa['dset'] = [1]
                    dset2 = dset.copy()
                    dset2.fa['dset'] = [2]
                    dset_ = hstack((dset1, dset2), 'drop_nonunique')
                    dset_.sa = dset1.sa
                    # dset_.a.imghdr = dset1.a.imghdr
                    assert_true('imghdr' in dset_.a.keys())
                    assert_equal(dset_.a['imghdr'].value,
                                 dset1.a['imghdr'].value)
                    roi_feature_ids = searchlight.ca.roi_feature_ids
                    sl_dset_ = searchlight(dset_)
                    # and we should get twice the counts
                    assert_array_equal(sl_dset_.samples, sl_dset.samples * 2)

                    # compare old and new roi_feature_ids
                    assert (len(roi_feature_ids) == len(
                        searchlight.ca.roi_feature_ids))
                    nfeatures = dset.nfeatures
                    for old, new in zip(roi_feature_ids,
                                        searchlight.ca.roi_feature_ids):
                        # each new ids should comprise of old ones + (old + nfeatures)
                        # since we hstack'ed two datasets
                        assert_array_equal(
                            np.hstack([(x, x + nfeatures) for x in old]), new)
                    tested_double_features = True

        # check whether number of voxels were selected is as expected
        expected_voxcount = [22, 93, 183, 183, 183, 183, 183, 183, 183]

        assert_equal(voxcount, expected_voxcount)
Example #16
0
    def test_volume_mask_dict(self):
        # also tests the outside_node_margin feature
        sh = (10, 10, 10)
        msk = np.zeros(sh)
        for i in xrange(0, sh[0], 2):
            msk[i, :, :] = 1

        vol_affine = np.identity(4)
        vol_affine[0, 0] = vol_affine[1, 1] = vol_affine[2, 2] = 2

        vg = volgeom.VolGeom(sh, vol_affine, mask=msk)

        density = 10

        outer = surf.generate_sphere(density) * 10. + 5
        inner = surf.generate_sphere(density) * 5. + 5

        intermediate = outer * .5 + inner * .5
        xyz = intermediate.vertices

        radius = 50

        outside_node_margins = [None, 0, 100., np.inf, True]
        expected_center_count = [87] * 2 + [intermediate.nvertices] * 3
        for k, outside_node_margin in enumerate(outside_node_margins):

            sel = surf_voxel_selection.run_voxel_selection(
                radius,
                vg,
                inner,
                outer,
                outside_node_margin=outside_node_margin)
            assert_equal(intermediate, sel.source)
            assert_equal(len(sel.keys()), expected_center_count[k])
            assert_true(
                set(sel.aux_keys()).issubset(
                    set(['center_distances', 'grey_matter_position'])))

            msk_lin = msk.ravel()
            sel_msk_lin = sel.get_mask().ravel()
            for i in xrange(vg.nvoxels):
                if msk_lin[i]:
                    src = sel.target2nearest_source(i)
                    assert_false((src is None) ^ (sel_msk_lin[i] == 0))

                    if src is None:
                        continue

                    # index of node nearest to voxel i
                    src_anywhere = sel.target2nearest_source(
                        i, fallback_euclidean_distance=True)

                    # coordinates of node nearest to voxel i
                    xyz_src = xyz[src_anywhere]

                    # coordinates of voxel i
                    xyz_trg = vg.lin2xyz(np.asarray([i]))

                    # distance between node nearest to voxel i, and voxel i
                    # this should be the smallest distancer
                    d = volgeom.distance(np.reshape(xyz_src, (1, 3)), xyz_trg)

                    # distances between all nodes and voxel i
                    ds = volgeom.distance(xyz, xyz_trg)

                    # order of the distances
                    is_ds = np.argsort(ds.ravel())

                    # go over all the nodes
                    # require that the node is in the volume
                    # mask

                    # index of node nearest to voxel i
                    ii = np.argmin(ds)

                    xyz_min = xyz[ii]
                    lin_min = vg.xyz2lin([xyz_min])

                    # linear index of voxel that contains xyz_src
                    lin_src = vg.xyz2lin(np.reshape(xyz_src, (1, 3)))

                    # when using multi-core support,
                    # pickling and unpickling can reduce the precision
                    # a little bit, causing rounding errors
                    eps = 1e-14

                    delta = np.abs(ds[ii] - d)
                    assert_false(delta > eps and ii in sel and i in sel[ii]
                                 and vg.contains_lin(lin_min))
Example #17
0
    def test_volgeom(self, temp_fn):
        sz = (17, 71, 37, 73)  # size of 4-D 'brain volume'
        d = 2.  # voxel size
        xo, yo, zo = -6., -12., -20.  # origin
        mx = np.identity(4, np.float) * d  # affine transformation matrix
        mx[3, 3] = 1
        mx[0, 3] = xo
        mx[1, 3] = yo
        mx[2, 3] = zo

        vg = volgeom.VolGeom(sz, mx)  # initialize volgeom

        eq_shape_nvoxels = {
            (17, 71, 37): (True, True),
            (71, 17, 37, 1): (False, True),
            (17, 71, 37, 2): (True, True),
            (17, 71, 37, 73): (True, True),
            (2, 2, 2): (False, False)
        }

        for other_sz, (eq_shape, eq_nvoxels) in eq_shape_nvoxels.iteritems():
            other_vg = volgeom.VolGeom(other_sz, mx)
            assert_equal(other_vg.same_shape(vg), eq_shape)
            assert_equal(other_vg.nvoxels_mask == vg.nvoxels_mask, eq_nvoxels)

        nv = sz[0] * sz[1] * sz[2]  # number of voxels
        nt = sz[3]  # number of time points
        assert_equal(vg.nvoxels, nv)

        # a couple of hard-coded test cases
        # last two are outside the volume
        linidxs = [0, 1, sz[2], sz[1] * sz[2], nv - 1, -1, nv]
        subidxs = ([(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0),
                    (sz[0] - 1, sz[1] - 1, sz[2] - 1)] +
                   [(sz[0], sz[1], sz[2])] * 2)

        xyzs = ([(xo, yo, zo), (xo, yo, zo + d), (xo, yo + d, zo),
                 (xo + d, yo, zo),
                 (xo + d * (sz[0] - 1), yo + d * (sz[1] - 1), zo + d *
                  (sz[2] - 1))] + [(np.nan, np.nan, np.nan)] * 2)

        for i, linidx in enumerate(linidxs):
            lin = np.asarray([linidx])
            ijk = vg.lin2ijk(lin)
            ijk_expected = np.reshape(np.asarray(subidxs[i]), (1, 3))
            assert_array_almost_equal(ijk, ijk_expected)
            xyz = vg.lin2xyz(lin)
            xyz_expected = np.reshape(np.asarray(xyzs[i]), (1, 3))
            assert_array_almost_equal(xyz, xyz_expected)

        # check that some identities hold
        ab, bc, ac = vg.lin2ijk, vg.ijk2xyz, vg.lin2xyz
        ba, cb, ca = vg.ijk2lin, vg.xyz2ijk, vg.xyz2lin
        identities = [
            lambda x: ab(ba(x)), lambda x: bc(cb(x)), lambda x: ac(ca(x)),
            lambda x: ba(ab(x)), lambda x: cb(bc(x)), lambda x: ca(ac(x)),
            lambda x: bc(ab(ca(x))), lambda x: ba(cb(ac(x)))
        ]

        # 0=lin, 1=ijk, 2=xyz
        identities_input = [1, 2, 2, 0, 1, 0, 2, 0]

        # voxel indices to test
        linrange = [0, 1, sz[2], sz[1] * sz[2]] + range(0, nv, nv // 100)

        lin = np.reshape(np.asarray(linrange), (-1, ))
        ijk = vg.lin2ijk(lin)
        xyz = vg.ijk2xyz(ijk)

        for j, identity in enumerate(identities):
            inp = identities_input[j]
            x = {0: lin, 1: ijk, 2: xyz}[inp]

            assert_array_equal(x, identity(x))

        # check that masking works
        assert_true(vg.contains_lin(lin).all())
        assert_false(vg.contains_lin(-lin - 1).any())

        assert_true(vg.contains_ijk(ijk).all())
        assert_false(vg.contains_ijk(-ijk - 1).any())

        # ensure that we have no rounding issues
        deltas = [-.51, -.49, 0., .49, .51]
        should_raise = [True, False, False, False, True]

        for delta, r in zip(deltas, should_raise):
            xyz_d = xyz + delta * d
            lin_d = vg.xyz2lin(xyz_d)

            if r:
                assert_raises(AssertionError, assert_array_almost_equal, lin_d,
                              lin)
            else:
                assert_array_almost_equal(lin_d, lin)

        # some I/O testing

        img = vg.get_empty_nifti_image()
        img.to_filename(temp_fn)

        assert_true(os.path.exists(temp_fn))

        vg2 = volgeom.from_any(img)
        vg3 = volgeom.from_any(temp_fn)

        assert_array_equal(vg.affine, vg2.affine)
        assert_array_equal(vg.affine, vg3.affine)

        assert_equal(vg.shape[:3], vg2.shape[:3], 0)
        assert_equal(vg.shape[:3], vg3.shape[:3], 0)

        assert_true(len('%s%r' % (vg, vg)) > 0)
Example #18
0
    def test_mask_with_keys(self):
        vol_shape = (10, 10, 10, 3)
        vol_affine = np.identity(4)
        vg = volgeom.VolGeom(vol_shape, vol_affine)

        data = np.random.normal(size=vol_shape)
        msk = np.ones(vol_shape[:3])
        msk[:, 1:-1:2, :] = 0

        ni_data = nb.Nifti1Image(data, vol_affine)
        ni_msk = nb.Nifti1Image(msk, vol_affine)

        ds = fmri_dataset(ni_data, mask=ni_msk)

        sphere_density = 20
        outer = surf.generate_sphere(sphere_density) * 10. + 5
        inner = surf.generate_sphere(sphere_density) * 7. + 5

        radius = 10
        sel = surf_voxel_selection.run_voxel_selection(radius, ds,
                                                       inner, outer)

        # in the mapping below:
        # (tup: None) means that tup as input should raise a KeyError
        # (tup: i) with i an int means that tup as input should return i
        #          elements
        qe_ids2nvoxels = {SurfaceVoxelsQueryEngine:
                              {(1, 2, 3): 13,
                               tuple(np.arange(0, 200, 2)): 82,
                               (601,): None,
                               None: 126},
                          SurfaceVerticesQueryEngine:
                              {(1, 2, 3): None,
                               (205, 209, 210, 214): 36,
                               None: 126}}

        for constructor, ids2nfeatures in qe_ids2nvoxels.iteritems():
            qe = constructor(sel)
            qe.train(ds)
            img = qe.get_masked_nifti_image()
            assert_array_equal(img.get_data(),
                               qe.get_masked_nifti_image(qe.ids).get_data())

            img_getter = qe.get_masked_nifti_image
            for ids, nfeatures in ids2nfeatures.iteritems():

                ids_list = ids if ids is None else list(ids)
                if nfeatures is None and ids is not None:
                    assert_raises(KeyError, img_getter, ids_list)
                else:
                    img = img_getter(ids_list)
                    nfeatures_found = np.sum(img.get_data())
                    assert_equal(nfeatures, nfeatures_found)
                    if constructor is SurfaceVerticesQueryEngine:
                        expected_image = qe.get_masked_nifti_image(ids_list)
                        expected_mask = expected_image.get_data()
                        check_mask_func = lambda x: assert_array_equal(
                            expected_mask, x)
                        check_image_func = lambda x: check_mask_func(
                            x.get_data()) and \
                                assert_array_equal(x.affine,
                                                   expected_image.affine)

                        check_mask_func(sel.get_mask(ids_list))
                        check_image_func(sel.get_nifti_image_mask(ids_list))

                        tups = sel.get_voxel_indices(ids_list)
                        tups_mask = np.zeros(expected_mask.shape)
                        for tup in tups:
                            tups_mask[tup] += 1
                        assert_array_equal(expected_mask != 0, tups_mask != 0)