def test_volgeom_masking(self): maskstep = 5 vg = volgeom.VolGeom((2 * maskstep, 2 * maskstep, 2 * maskstep), np.identity(4)) mask = vg.get_empty_array() sh = vg.shape # mask a subset of the voxels rng = range(0, sh[0], maskstep) for i in rng: for j in rng: for k in rng: mask[i, j, k] = 1 # make a new volgeom instance vg = volgeom.VolGeom(vg.shape, vg.affine, mask) data = vg.get_masked_nifti_image(nt=1) msk = vg.get_masked_nifti_image() dset = fmri_dataset(data, mask=msk) vg_dset = volgeom.from_any(dset) # ensure that the mask is set properly and assert_equal(vg.nvoxels, vg.nvoxels_mask * maskstep ** 3) assert_equal(vg_dset, vg) dilates = range(0, 8, 2) nvoxels_masks = [] # keep track of number of voxels for each size for dilate in dilates: covers_full_volume = dilate * 2 >= maskstep * 3 ** .5 + 1 # constr gets values: None, Sphere(0), 2, Sphere(2), ... for i, constr in enumerate([Sphere, lambda x:x if x else None]): dilater = constr(dilate) img_dilated = vg.get_masked_nifti_image(dilate=dilater) data = img_dilated.get_data() assert_array_equal(data, vg.get_masked_array(dilate=dilater)) n = np.sum(data) # number of voxels in mask is increasing assert_true(all(n >= p for p in nvoxels_masks)) # results should be identical irrespective of constr if i == 0: # - first call with this value of dilate: has to be more # voxels than very previous dilation value, unless the # full volume is covered - then it can be equal too # - every next call: ensure size matches cmp = lambda x, y:(x >= y if covers_full_volume else x > y) assert_true(all(cmp(n, p) for p in nvoxels_masks)) nvoxels_masks.append(n) else: # same size as previous call assert_equal(n, nvoxels_masks[-1]) # if dilate is not None or zero, then it should # have selected all the voxels if the radius is big enough assert_equal(np.sum(data) == vg.nvoxels, covers_full_volume)
def test_queryengine_io(self, fn): skip_if_no_external('h5py') from mvpa2.base.hdf5 import h5save, h5load vol_shape = (10, 10, 10, 1) vol_affine = np.identity(4) vg = volgeom.VolGeom(vol_shape, vol_affine) # generate some surfaces, # and add some noise to them sphere_density = 10 outer = surf.generate_sphere(sphere_density) * 5 + 8 inner = surf.generate_sphere(sphere_density) * 3 + 8 radius = 5. add_fa = ['center_distances', 'grey_matter_position'] qe = disc_surface_queryengine(radius, vg, inner, outer, add_fa=add_fa) ds = fmri_dataset(vg.get_masked_nifti_image()) # the following is not really a strong requirement. XXX remove? assert_raises(ValueError, lambda: qe[qe.ids[0]]) # check that after training it behaves well qe.train(ds) i = qe.ids[0] try: m = qe[i] except ValueError, e: raise AssertionError( 'Failed to query %r from %r after training on %r. Exception was: %r' % (i, qe, ds, e))
def test_surface_voxel_query_engine(self): vol_shape = (10, 10, 10, 1) vol_affine = np.identity(4) vol_affine[0, 0] = vol_affine[1, 1] = vol_affine[2, 2] = 5 vg = volgeom.VolGeom(vol_shape, vol_affine) # make the surfaces sphere_density = 10 outer = surf.generate_sphere(sphere_density) * 25. + 15 inner = surf.generate_sphere(sphere_density) * 20. + 15 vs = volsurf.VolSurfMaximalMapping(vg, inner, outer) radius = 10 for fallback, expected_nfeatures in ((True, 1000), (False, 183)): voxsel = surf_voxel_selection.voxel_selection(vs, radius) qe = SurfaceVoxelsQueryEngine(voxsel, fallback_euclidian_distance=fallback) m = _Voxel_Count_Measure() sl = Searchlight(m, queryengine=qe) data = np.random.normal(size=vol_shape) img = nb.Nifti1Image(data, vol_affine) ds = fmri_dataset(img) sl_map = sl(ds) counts = sl_map.samples assert_true(np.all(np.logical_and(5 <= counts, counts <= 18))) assert_equal(sl_map.nfeatures, expected_nfeatures)
def test_h5support(self): sh = (20, 20, 20) msk = np.zeros(sh) for i in xrange(0, sh[0], 2): msk[i, :, :] = 1 vg = volgeom.VolGeom(sh, np.identity(4), mask=msk) density = 20 outer = surf.generate_sphere(density) * 10. + 5 inner = surf.generate_sphere(density) * 5. + 5 intermediate = outer * .5 + inner * .5 xyz = intermediate.vertices radius = 50 backends = ['native', 'hdf5'] for i, backend in enumerate(backends): if backend == 'hdf5' and not externals.exists('h5py'): continue sel = surf_voxel_selection.run_voxel_selection( radius, vg, inner, outer, results_backend=backend) if i == 0: sel0 = sel else: assert_equal(sel0, sel)
def test_volsurf_projections(self): white = surf.generate_plane((0, 0, 0), (0, 1, 0), (0, 0, 1), 10, 10) pial = white + np.asarray([[1, 0, 0]]) above = pial + np.asarray([[3, 0, 0]]) vg = volgeom.VolGeom((10, 10, 10), np.eye(4)) vs = volsurf.VolSurfMaximalMapping(vg, white, pial) dx = pial.vertices - white.vertices for s, w in ((white, 0), (pial, 1), (above, 4)): xyz = s.vertices ws = vs.surf_project_weights(True, xyz) delta = vs.surf_unproject_weights_nodewise(ws) - xyz assert_array_equal(delta, np.zeros((100, 3))) assert_true(np.all(w == ws)) vs = volsurf.VolSurfMaximalMapping(vg, white, pial, nsteps=2) n2vs = vs.get_node2voxels_mapping() assert_equal(n2vs, dict((i, { i: 0., i + 100: 1. }) for i in xrange(100))) nd = 17 ds_mm_expected = np.sum((above.vertices - pial.vertices[nd, :])**2, 1)**.5 ds_mm = vs.coordinates_to_grey_distance_mm(nd, above.vertices) assert_array_almost_equal(ds_mm_expected, ds_mm) ds_mm_nodewise = vs.coordinates_to_grey_distance_mm( True, above.vertices) assert_array_equal(ds_mm_nodewise, np.ones((100, )) * 3)
def test_surface_minimal_voxel_selection(self): # Tests 'minimal' voxel selection. # It assumes that 'maximal' voxel selection works (which is tested # in other unit tests) vol_shape = (10, 10, 10, 1) vol_affine = np.identity(4) vg = volgeom.VolGeom(vol_shape, vol_affine) # generate some surfaces, # and add some noise to them sphere_density = 10 nvertices = sphere_density**2 + 2 noise = np.random.uniform(size=(nvertices, 3)) outer = surf.generate_sphere(sphere_density) * 5 + 8 + noise inner = surf.generate_sphere(sphere_density) * 3 + 8 + noise radii = [5., 20., 10] # note: no fixed radii at the moment # Note: a little outside margin is necessary # as otherwise there are nodes in the minimal case # that have no voxels associated with them for radius in radii: for output_modality in ('surface', 'volume'): for i, nvm in enumerate(('minimal', 'maximal')): qe = disc_surface_queryengine( radius, vg, inner, outer, node_voxel_mapping=nvm, output_modality=output_modality) voxsel = qe.voxsel if i == 0: keys_ = voxsel.keys() voxsel_ = voxsel else: keys = voxsel.keys() # minimal one has a subset assert_equal(keys, keys_) # and the subset is quite overlapping assert_true(len(keys) * .90 < len(keys_)) for k in keys_: x = set(voxsel_[k]) y = set(voxsel[k]) d = set.symmetric_difference(x, y) r = float(len(d)) / 2 / len(x) if type(radius) is float: assert_equal(x - y, set()) # decent agreement in any case # between the two sets assert_true(r < .6)
def test_niml_dset_voxsel(self): if not externals.exists('nibabel'): return # This is actually a bit of an integration test. # It tests storing and retrieving searchlight results. # Imports are inline here so that it does not mess up the header # and makes the other unit tests more modular # XXX put this in a separate file? from mvpa2.misc.surfing import volgeom, surf_voxel_selection, queryengine from mvpa2.measures.searchlight import Searchlight from mvpa2.support.nibabel import surf from mvpa2.measures.base import Measure from mvpa2.datasets.mri import fmri_dataset class _Voxel_Count_Measure(Measure): # used to check voxel selection results is_trained = True def __init__(self, dtype, **kwargs): Measure.__init__(self, **kwargs) self.dtype = dtype def _call(self, dset): return self.dtype(dset.nfeatures) sh = (20, 20, 20) vg = volgeom.VolGeom(sh, np.identity(4)) density = 20 outer = surf.generate_sphere(density) * 10. + 5 inner = surf.generate_sphere(density) * 5. + 5 intermediate = outer * .5 + inner * .5 xyz = intermediate.vertices radius = 50 sel = surf_voxel_selection.run_voxel_selection(radius, vg, inner, outer) qe = queryengine.SurfaceVerticesQueryEngine(sel) for dtype in (int, float): sl = Searchlight(_Voxel_Count_Measure(dtype), queryengine=qe) ds = fmri_dataset(vg.get_empty_nifti_image(1)) r = sl(ds) _, fn = tempfile.mkstemp('.niml.dset', 'dset') niml_dset.write(fn, r) rr = niml_dset.read(fn) os.remove(fn) assert_array_equal(r.samples, rr.samples)
def test_surface_outside_volume_voxel_selection(self, fn): skip_if_no_external('h5py') from mvpa2.base.hdf5 import h5save, h5load vol_shape = (10, 10, 10, 1) vol_affine = np.identity(4) vg = volgeom.VolGeom(vol_shape, vol_affine) # make surfaces that are far away from all voxels # in the volume sphere_density = 4 far = 10000. outer = surf.generate_sphere(sphere_density) * 10 + far inner = surf.generate_sphere(sphere_density) * 5 + far vs = volsurf.VolSurfMaximalMapping(vg, inner, outer) radii = [10., 10] # fixed and variable radii outside_node_margins = [0, far, True] for outside_node_margin in outside_node_margins: for radius in radii: selector = lambda: surf_voxel_selection.voxel_selection(vs, radius, outside_node_margin=outside_node_margin) if type(radius) is int and outside_node_margin is True: assert_raises(ValueError, selector) else: sel = selector() if outside_node_margin is True: # it should have all the keys, but they should # all be empty assert_array_equal(sel.keys(), range(inner.nvertices)) for k, v in sel.iteritems(): assert_equal(v, []) else: assert_array_equal(sel.keys(), []) if outside_node_margin is True and \ externals.versions['hdf5'] < '1.8.7': raise SkipTest("Versions of hdf5 before 1.8.7 have " "problems with empty arrays") h5save(fn, sel) sel_copy = h5load(fn) assert_array_equal(sel.keys(), sel_copy.keys()) for k in sel.keys(): assert_equal(sel[k], sel_copy[k]) assert_equal(sel, sel_copy)
def test_agreement_surface_volume(self): '''test agreement between volume-based and surface-based searchlights when using euclidean measure''' # import runner def sum_ds(ds): return np.sum(ds) radius = 3 # make a small dataset with a mask sh = (10, 10, 10) msk = np.zeros(sh) for i in xrange(0, sh[0], 2): msk[i, :, :] = 1 vg = volgeom.VolGeom(sh, np.identity(4), mask=msk) # make an image nt = 6 img = vg.get_masked_nifti_image(6) ds = fmri_dataset(img, mask=msk) # run the searchlight sl = sphere_searchlight(sum_ds, radius=radius) m = sl(ds) # now use surface-based searchlight v = volsurf.from_volume(ds) source_surf = v.intermediate_surface node_msk = np.logical_not(np.isnan(source_surf.vertices[:, 0])) # check that the mask matches with what we used earlier assert_array_equal(msk.ravel() + 0., node_msk.ravel() + 0.) source_surf_nodes = np.nonzero(node_msk)[0] sel = surf_voxel_selection.voxel_selection( v, float(radius), source_surf=source_surf, source_surf_nodes=source_surf_nodes, distance_metric='euclidean') qe = queryengine.SurfaceVerticesQueryEngine(sel) sl = Searchlight(sum_ds, queryengine=qe) r = sl(ds) # check whether they give the same results assert_array_equal(r.samples, m.samples)
def test_volsurf(self): vg = volgeom.VolGeom((50, 50, 50), np.identity(4)) density = 40 outer = surf.generate_sphere(density) * 25. + 25 inner = surf.generate_sphere(density) * 20. + 25 # increasingly select more voxels in 'grey matter' steps_start_stop = [(1, .5, .5), (5, .5, .5), (3, .3, .7), (5, .3, .7), (5, 0., 1.), (10, 0., 1.)] mp = None expected_keys = set(range(density**2 + 2)) selection_counter = [] voxel_counter = [] for sp, sa, so in steps_start_stop: vs = volsurf.VolSurfMaximalMapping(vg, outer, inner, (outer + inner) * .5, sp, sa, so) n2v = vs.get_node2voxels_mapping() if mp is None: mp = n2v assert_equal(expected_keys, set(n2v.keys())) counter = 0 for k, v2pos in n2v.iteritems(): for v, pos in v2pos.iteritems(): # should be close to grey matter assert_true(-1. <= pos <= 2.) counter += 1 selection_counter.append(counter) img = vs.voxel_count_nifti_image() voxel_counter.append(np.sum(img.get_data() > 0)) # hard coded number of expected voxels selection_expected = [1602, 1602, 4618, 5298, 7867, 10801] assert_equal(selection_counter, selection_expected) voxel_expected = [1498, 1498, 4322, 4986, 7391, 10141] assert_equal(voxel_counter, voxel_expected) # check that string building works assert_true(len('%s%r' % (vs, vs)) > 0)
def test_surface_minimal_lowres_voxel_selection(self, fn): vol_shape = (4, 10, 10, 1) vol_affine = np.identity(4) vg = volgeom.VolGeom(vol_shape, vol_affine) # make surfaces that are far away from all voxels # in the volume sphere_density = 10 radius = 10 outer = surf.generate_plane((0, 0, 4), (0, .4, 0), (0, 0, .4), 14, 14) inner = outer + 2 source = surf.generate_plane((0, 0, 4), (0, .8, 0), (0, 0, .8), 7, 7) + 1 for i, nvm in enumerate(('minimal', 'minimal_lowres')): qe = disc_surface_queryengine(radius, vg, inner, outer, source, node_voxel_mapping=nvm) voxsel = qe.voxsel if i == 0: voxsel0 = voxsel else: assert_equal(voxsel.keys(), voxsel0.keys()) for k in voxsel.keys(): p = voxsel[k] q = voxsel0[k] # require at least 60% agreement delta = set.symmetric_difference(set(p), set(q)) assert_true(len(delta) < .8 * (len(p) + len(q))) if externals.exists('h5py'): from mvpa2.base.hdf5 import h5save, h5load h5save(fn, voxsel) voxsel_copy = h5load(fn) assert_equal(voxsel.keys(), voxsel_copy.keys()) for id in qe.ids: assert_array_equal(voxsel.get(id), voxsel_copy.get(id))
def test_minimal_dataset(self): vol_shape = (10, 10, 10, 3) vol_affine = np.identity(4) vg = volgeom.VolGeom(vol_shape, vol_affine) data = np.random.normal(size=vol_shape) msk = np.ones(vol_shape[:3]) msk[:, 1:-1:2, :] = 0 ni_data = nb.Nifti1Image(data, vol_affine) ni_msk = nb.Nifti1Image(msk, vol_affine) ds = fmri_dataset(ni_data, mask=ni_msk) sphere_density = 20 outer = surf.generate_sphere(sphere_density) * 10. + 5 inner = surf.generate_sphere(sphere_density) * 7. + 5 radius = 10 sel = surf_voxel_selection.run_voxel_selection(radius, ds, inner, outer) sel_fids = set.union(*(set(sel[k]) for k in sel.keys())) ds_vox = map(tuple, ds.fa.voxel_indices) vg = sel.volgeom sel_vox = map(tuple, vg.lin2ijk(np.asarray(list(sel_fids)))) fid_mask = np.asarray([v in sel_vox for v in ds_vox]) assert_array_equal(fid_mask, sel.get_dataset_feature_mask(ds)) # check if it raises errors ni_neg_msk = nb.Nifti1Image(1 - msk, vol_affine) neg_ds = fmri_dataset(ni_data, mask=ni_neg_msk) # inverted mask assert_raises(ValueError, sel.get_dataset_feature_mask, neg_ds) min_ds = sel.get_minimal_dataset(ds) assert_array_equal(min_ds.samples, ds[:, fid_mask].samples)
def test_volsurf_surf_from_volume(self): aff = np.eye(4) aff[0, 0] = aff[1, 1] = aff[2, 2] = 3 sh = (40, 40, 40) vg = volgeom.VolGeom(sh, aff) p = volsurf.from_volume(vg).intermediate_surface q = volsurf.VolumeBasedSurface(vg) centers = [0, 10, 10000, (-1, -1, -1), (5, 5, 5)] radii = [0, 10, 20, 100] for center in centers: for radius in radii: x = p.circlearound_n2d(center, radius) y = q.circlearound_n2d(center, radius) assert_equal(x, y)
def test_surface_voxel_query_engine(self): vol_shape = (10, 10, 10, 1) vol_affine = np.identity(4) vol_affine[0, 0] = vol_affine[1, 1] = vol_affine[2, 2] = 5 vg = volgeom.VolGeom(vol_shape, vol_affine) # make the surfaces sphere_density = 10 outer = surf.generate_sphere(sphere_density) * 25. + 15 inner = surf.generate_sphere(sphere_density) * 20. + 15 vs = volsurf.VolSurfMaximalMapping(vg, inner, outer) radius = 10 for fallback, expected_nfeatures in ((True, 1000), (False, 183)): voxsel = surf_voxel_selection.voxel_selection(vs, radius) qe = SurfaceVoxelsQueryEngine(voxsel, fallback_euclidean_distance=fallback) # test i/o and ensure that the loaded instance is trained if externals.exists('h5py'): fd, qefn = tempfile.mkstemp('qe.hdf5', 'test') os.close(fd) h5save(qefn, qe) qe = h5load(qefn) os.remove(qefn) m = _Voxel_Count_Measure() sl = Searchlight(m, queryengine=qe) data = np.random.normal(size=vol_shape) img = nb.Nifti1Image(data, vol_affine) ds = fmri_dataset(img) sl_map = sl(ds) counts = sl_map.samples assert_true(np.all(np.logical_and(5 <= counts, counts <= 18))) assert_equal(sl_map.nfeatures, expected_nfeatures)
def test_surf_voxel_selection(self): vol_shape = (10, 10, 10) vol_affine = np.identity(4) vol_affine[0, 0] = vol_affine[1, 1] = vol_affine[2, 2] = 5 vg = volgeom.VolGeom(vol_shape, vol_affine) density = 10 outer = surf.generate_sphere(density) * 25. + 15 inner = surf.generate_sphere(density) * 20. + 15 vs = volsurf.VolSurfMaximalMapping(vg, outer, inner) nv = outer.nvertices # select under variety of parameters # parameters are distance metric (dijkstra or euclidean), # radius, and number of searchlight centers params = [('d', 1., 10), ('d', 1., 50), ('d', 1., 100), ('d', 2., 100), ('e', 2., 100), ('d', 2., 100), ('d', 20, 100), ('euclidean', 5, None), ('dijkstra', 10, None)] # function that indicates for which parameters the full test is run test_full = lambda x: len(x[0]) > 1 or x[2] == 100 expected_labs = ['grey_matter_position', 'center_distances'] voxcount = [] tested_double_features = False for param in params: distance_metric, radius, ncenters = param srcs = range(0, nv, nv // (ncenters or nv)) sel = surf_voxel_selection.voxel_selection( vs, radius, source_surf_nodes=srcs, distance_metric=distance_metric) # see how many voxels were selected vg = sel.volgeom datalin = np.zeros((vg.nvoxels, 1)) mp = sel for k, idxs in mp.iteritems(): if idxs is not None: datalin[idxs] = 1 voxcount.append(np.sum(datalin)) if test_full(param): assert_equal(np.sum(datalin), np.sum(sel.get_mask())) assert_true(len('%s%r' % (sel, sel)) > 0) # see if voxels containing inner and outer # nodes were selected for sf in [inner, outer]: for k, idxs in mp.iteritems(): xyz = np.reshape(sf.vertices[k, :], (1, 3)) linidx = vg.xyz2lin(xyz) # only required if xyz is actually within the volume assert_equal(linidx in idxs, vg.contains_lin(linidx)) # check that it has all the attributes labs = sel.aux_keys() assert_true(all([lab in labs for lab in expected_labs])) if externals.exists('h5py'): # some I/O testing fd, fn = tempfile.mkstemp('.h5py', 'test') os.close(fd) h5save(fn, sel) sel2 = h5load(fn) os.remove(fn) assert_equal(sel, sel2) else: sel2 = sel # check that mask is OK even after I/O assert_array_equal(sel.get_mask(), sel2.get_mask()) # test I/O with surfaces # XXX the @tempfile decorator only supports a single filename # hence this method does not use it fd, outerfn = tempfile.mkstemp('outer.asc', 'test') os.close(fd) fd, innerfn = tempfile.mkstemp('inner.asc', 'test') os.close(fd) fd, volfn = tempfile.mkstemp('vol.nii', 'test') os.close(fd) surf.write(outerfn, outer, overwrite=True) surf.write(innerfn, inner, overwrite=True) img = sel.volgeom.get_empty_nifti_image() img.to_filename(volfn) sel3 = surf_voxel_selection.run_voxel_selection( radius, volfn, innerfn, outerfn, source_surf_nodes=srcs, distance_metric=distance_metric) outer4 = surf.read(outerfn) inner4 = surf.read(innerfn) vsm4 = vs = volsurf.VolSurfMaximalMapping(vg, inner4, outer4) # check that two ways of voxel selection match sel4 = surf_voxel_selection.voxel_selection( vsm4, radius, source_surf_nodes=srcs, distance_metric=distance_metric) assert_equal(sel3, sel4) os.remove(outerfn) os.remove(innerfn) os.remove(volfn) # compare sel3 with other selection results # NOTE: which voxels are precisely selected by sel can be quite # off from those in sel3, as writing the surfaces imposes # rounding errors and the sphere is very symmetric, which # means that different neighboring nodes are selected # to select a certain number of voxels. sel3cmp_difference_ratio = [(sel, .2), (sel4, 0.)] for selcmp, ratio in sel3cmp_difference_ratio: nunion = ndiff = 0 for k in selcmp.keys(): p = set(sel3.get(k)) q = set(selcmp.get(k)) nunion += len(p.union(q)) ndiff += len(p.symmetric_difference(q)) assert_true(float(ndiff) / float(nunion) <= ratio) # check searchlight call # as of late Aug 2012, this is with the fancy query engine # as implemented by Yarik mask = sel.get_mask() keys = None if ncenters is None else sel.keys() dset_data = np.reshape(np.arange(vg.nvoxels), vg.shape) dset_img = nb.Nifti1Image(dset_data, vg.affine) dset = fmri_dataset(samples=dset_img, mask=mask) qe = queryengine.SurfaceVerticesQueryEngine( sel, # you can optionally add additional # information about each near-disk-voxels add_fa=['center_distances', 'grey_matter_position']) # test i/o ensuring that when loading it is still trained if externals.exists('h5py'): fd, qefn = tempfile.mkstemp('qe.hdf5', 'test') os.close(fd) h5save(qefn, qe) qe = h5load(qefn) os.remove(qefn) assert_false('ERROR' in repr(qe)) # to check if repr works voxelcounter = _Voxel_Count_Measure() searchlight = Searchlight( voxelcounter, queryengine=qe, roi_ids=keys, nproc=1, enable_ca=['roi_feature_ids', 'roi_center_ids']) sl_dset = searchlight(dset) selected_count = sl_dset.samples[0, :] mp = sel for i, k in enumerate(sel.keys()): # check that number of selected voxels matches assert_equal(selected_count[i], len(mp[k])) assert_equal(searchlight.ca.roi_center_ids, sel.keys()) assert_array_equal(sl_dset.fa['center_ids'], qe.ids) # check nearest node is *really* the nearest node allvx = sel.get_targets() intermediate = outer * .5 + inner * .5 for vx in allvx: nearest = sel.target2nearest_source(vx) xyz = intermediate.vertices[nearest, :] sqsum = np.sum((xyz - intermediate.vertices)**2, 1) idx = np.argmin(sqsum) assert_equal(idx, nearest) if not tested_double_features: # test only once # see if we have multiple features for the same voxel, we would get them all dset1 = dset.copy() dset1.fa['dset'] = [1] dset2 = dset.copy() dset2.fa['dset'] = [2] dset_ = hstack((dset1, dset2), 'drop_nonunique') dset_.sa = dset1.sa # dset_.a.imghdr = dset1.a.imghdr assert_true('imghdr' in dset_.a.keys()) assert_equal(dset_.a['imghdr'].value, dset1.a['imghdr'].value) roi_feature_ids = searchlight.ca.roi_feature_ids sl_dset_ = searchlight(dset_) # and we should get twice the counts assert_array_equal(sl_dset_.samples, sl_dset.samples * 2) # compare old and new roi_feature_ids assert (len(roi_feature_ids) == len( searchlight.ca.roi_feature_ids)) nfeatures = dset.nfeatures for old, new in zip(roi_feature_ids, searchlight.ca.roi_feature_ids): # each new ids should comprise of old ones + (old + nfeatures) # since we hstack'ed two datasets assert_array_equal( np.hstack([(x, x + nfeatures) for x in old]), new) tested_double_features = True # check whether number of voxels were selected is as expected expected_voxcount = [22, 93, 183, 183, 183, 183, 183, 183, 183] assert_equal(voxcount, expected_voxcount)
def test_volume_mask_dict(self): # also tests the outside_node_margin feature sh = (10, 10, 10) msk = np.zeros(sh) for i in xrange(0, sh[0], 2): msk[i, :, :] = 1 vol_affine = np.identity(4) vol_affine[0, 0] = vol_affine[1, 1] = vol_affine[2, 2] = 2 vg = volgeom.VolGeom(sh, vol_affine, mask=msk) density = 10 outer = surf.generate_sphere(density) * 10. + 5 inner = surf.generate_sphere(density) * 5. + 5 intermediate = outer * .5 + inner * .5 xyz = intermediate.vertices radius = 50 outside_node_margins = [None, 0, 100., np.inf, True] expected_center_count = [87] * 2 + [intermediate.nvertices] * 3 for k, outside_node_margin in enumerate(outside_node_margins): sel = surf_voxel_selection.run_voxel_selection( radius, vg, inner, outer, outside_node_margin=outside_node_margin) assert_equal(intermediate, sel.source) assert_equal(len(sel.keys()), expected_center_count[k]) assert_true( set(sel.aux_keys()).issubset( set(['center_distances', 'grey_matter_position']))) msk_lin = msk.ravel() sel_msk_lin = sel.get_mask().ravel() for i in xrange(vg.nvoxels): if msk_lin[i]: src = sel.target2nearest_source(i) assert_false((src is None) ^ (sel_msk_lin[i] == 0)) if src is None: continue # index of node nearest to voxel i src_anywhere = sel.target2nearest_source( i, fallback_euclidean_distance=True) # coordinates of node nearest to voxel i xyz_src = xyz[src_anywhere] # coordinates of voxel i xyz_trg = vg.lin2xyz(np.asarray([i])) # distance between node nearest to voxel i, and voxel i # this should be the smallest distancer d = volgeom.distance(np.reshape(xyz_src, (1, 3)), xyz_trg) # distances between all nodes and voxel i ds = volgeom.distance(xyz, xyz_trg) # order of the distances is_ds = np.argsort(ds.ravel()) # go over all the nodes # require that the node is in the volume # mask # index of node nearest to voxel i ii = np.argmin(ds) xyz_min = xyz[ii] lin_min = vg.xyz2lin([xyz_min]) # linear index of voxel that contains xyz_src lin_src = vg.xyz2lin(np.reshape(xyz_src, (1, 3))) # when using multi-core support, # pickling and unpickling can reduce the precision # a little bit, causing rounding errors eps = 1e-14 delta = np.abs(ds[ii] - d) assert_false(delta > eps and ii in sel and i in sel[ii] and vg.contains_lin(lin_min))
def test_volgeom(self, temp_fn): sz = (17, 71, 37, 73) # size of 4-D 'brain volume' d = 2. # voxel size xo, yo, zo = -6., -12., -20. # origin mx = np.identity(4, np.float) * d # affine transformation matrix mx[3, 3] = 1 mx[0, 3] = xo mx[1, 3] = yo mx[2, 3] = zo vg = volgeom.VolGeom(sz, mx) # initialize volgeom eq_shape_nvoxels = { (17, 71, 37): (True, True), (71, 17, 37, 1): (False, True), (17, 71, 37, 2): (True, True), (17, 71, 37, 73): (True, True), (2, 2, 2): (False, False) } for other_sz, (eq_shape, eq_nvoxels) in eq_shape_nvoxels.iteritems(): other_vg = volgeom.VolGeom(other_sz, mx) assert_equal(other_vg.same_shape(vg), eq_shape) assert_equal(other_vg.nvoxels_mask == vg.nvoxels_mask, eq_nvoxels) nv = sz[0] * sz[1] * sz[2] # number of voxels nt = sz[3] # number of time points assert_equal(vg.nvoxels, nv) # a couple of hard-coded test cases # last two are outside the volume linidxs = [0, 1, sz[2], sz[1] * sz[2], nv - 1, -1, nv] subidxs = ([(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (sz[0] - 1, sz[1] - 1, sz[2] - 1)] + [(sz[0], sz[1], sz[2])] * 2) xyzs = ([(xo, yo, zo), (xo, yo, zo + d), (xo, yo + d, zo), (xo + d, yo, zo), (xo + d * (sz[0] - 1), yo + d * (sz[1] - 1), zo + d * (sz[2] - 1))] + [(np.nan, np.nan, np.nan)] * 2) for i, linidx in enumerate(linidxs): lin = np.asarray([linidx]) ijk = vg.lin2ijk(lin) ijk_expected = np.reshape(np.asarray(subidxs[i]), (1, 3)) assert_array_almost_equal(ijk, ijk_expected) xyz = vg.lin2xyz(lin) xyz_expected = np.reshape(np.asarray(xyzs[i]), (1, 3)) assert_array_almost_equal(xyz, xyz_expected) # check that some identities hold ab, bc, ac = vg.lin2ijk, vg.ijk2xyz, vg.lin2xyz ba, cb, ca = vg.ijk2lin, vg.xyz2ijk, vg.xyz2lin identities = [ lambda x: ab(ba(x)), lambda x: bc(cb(x)), lambda x: ac(ca(x)), lambda x: ba(ab(x)), lambda x: cb(bc(x)), lambda x: ca(ac(x)), lambda x: bc(ab(ca(x))), lambda x: ba(cb(ac(x))) ] # 0=lin, 1=ijk, 2=xyz identities_input = [1, 2, 2, 0, 1, 0, 2, 0] # voxel indices to test linrange = [0, 1, sz[2], sz[1] * sz[2]] + range(0, nv, nv // 100) lin = np.reshape(np.asarray(linrange), (-1, )) ijk = vg.lin2ijk(lin) xyz = vg.ijk2xyz(ijk) for j, identity in enumerate(identities): inp = identities_input[j] x = {0: lin, 1: ijk, 2: xyz}[inp] assert_array_equal(x, identity(x)) # check that masking works assert_true(vg.contains_lin(lin).all()) assert_false(vg.contains_lin(-lin - 1).any()) assert_true(vg.contains_ijk(ijk).all()) assert_false(vg.contains_ijk(-ijk - 1).any()) # ensure that we have no rounding issues deltas = [-.51, -.49, 0., .49, .51] should_raise = [True, False, False, False, True] for delta, r in zip(deltas, should_raise): xyz_d = xyz + delta * d lin_d = vg.xyz2lin(xyz_d) if r: assert_raises(AssertionError, assert_array_almost_equal, lin_d, lin) else: assert_array_almost_equal(lin_d, lin) # some I/O testing img = vg.get_empty_nifti_image() img.to_filename(temp_fn) assert_true(os.path.exists(temp_fn)) vg2 = volgeom.from_any(img) vg3 = volgeom.from_any(temp_fn) assert_array_equal(vg.affine, vg2.affine) assert_array_equal(vg.affine, vg3.affine) assert_equal(vg.shape[:3], vg2.shape[:3], 0) assert_equal(vg.shape[:3], vg3.shape[:3], 0) assert_true(len('%s%r' % (vg, vg)) > 0)
def test_mask_with_keys(self): vol_shape = (10, 10, 10, 3) vol_affine = np.identity(4) vg = volgeom.VolGeom(vol_shape, vol_affine) data = np.random.normal(size=vol_shape) msk = np.ones(vol_shape[:3]) msk[:, 1:-1:2, :] = 0 ni_data = nb.Nifti1Image(data, vol_affine) ni_msk = nb.Nifti1Image(msk, vol_affine) ds = fmri_dataset(ni_data, mask=ni_msk) sphere_density = 20 outer = surf.generate_sphere(sphere_density) * 10. + 5 inner = surf.generate_sphere(sphere_density) * 7. + 5 radius = 10 sel = surf_voxel_selection.run_voxel_selection(radius, ds, inner, outer) # in the mapping below: # (tup: None) means that tup as input should raise a KeyError # (tup: i) with i an int means that tup as input should return i # elements qe_ids2nvoxels = {SurfaceVoxelsQueryEngine: {(1, 2, 3): 13, tuple(np.arange(0, 200, 2)): 82, (601,): None, None: 126}, SurfaceVerticesQueryEngine: {(1, 2, 3): None, (205, 209, 210, 214): 36, None: 126}} for constructor, ids2nfeatures in qe_ids2nvoxels.iteritems(): qe = constructor(sel) qe.train(ds) img = qe.get_masked_nifti_image() assert_array_equal(img.get_data(), qe.get_masked_nifti_image(qe.ids).get_data()) img_getter = qe.get_masked_nifti_image for ids, nfeatures in ids2nfeatures.iteritems(): ids_list = ids if ids is None else list(ids) if nfeatures is None and ids is not None: assert_raises(KeyError, img_getter, ids_list) else: img = img_getter(ids_list) nfeatures_found = np.sum(img.get_data()) assert_equal(nfeatures, nfeatures_found) if constructor is SurfaceVerticesQueryEngine: expected_image = qe.get_masked_nifti_image(ids_list) expected_mask = expected_image.get_data() check_mask_func = lambda x: assert_array_equal( expected_mask, x) check_image_func = lambda x: check_mask_func( x.get_data()) and \ assert_array_equal(x.affine, expected_image.affine) check_mask_func(sel.get_mask(ids_list)) check_image_func(sel.get_nifti_image_mask(ids_list)) tups = sel.get_voxel_indices(ids_list) tups_mask = np.zeros(expected_mask.shape) for tup in tups: tups_mask[tup] += 1 assert_array_equal(expected_mask != 0, tups_mask != 0)