Example #1
0
##################
# Hyperparameter #
#----------------#
ctx = mx.cpu()
lr = 0.05
epochs = 10
momentum = 0.9
batch_size = 64
#----------------#
# Hyperparameter #
##################

################## model
from mxnet.gluon.model_zoo import vision

net = vision.densenet121(classes=10, pretrained=False, ctx=ctx)
# net = vision.densenet161(classes=10, pretrained=False, ctx=ctx)
# net = vision.densenet169(classes=10, pretrained=False, ctx=ctx)
# net = vision.densenet201(classes=10, pretrained=False, ctx=ctx)

################## 그래프
import gluoncv

inputShape = (1, 3, 224, 224)
gluoncv.utils.viz.plot_network(net, shape=inputShape)


##### 전처리 ##############################################
def transformer(data, label):
    data = mx.image.imresize(data, 224, 224)
    data = mx.nd.transpose(data, (2, 0, 1))
import mxnet as mx
import time
import gluoncv

from mxnet import nd, autograd
from mxnet import gluon
from mxnet.gluon import nn

inputShape = (1, 3, 224, 224)

from mxnet.gluon.model_zoo import vision

alexnet = vision.alexnet()
inception = vision.inception_v3()

resnet18v1 = vision.resnet18_v1()
resnet18v2 = vision.resnet18_v2()
squeezenet = vision.squeezenet1_0()
densenet = vision.densenet121()
mobilenet = vision.mobilenet0_5()

############### 그래프 ###############
import gluoncv
gluoncv.utils.viz.plot_network(resnet18v1, shape=inputShape)
#####################################
Example #3
0
                out = out.as_in_context(mx.cpu())
                out = out.asnumpy()       
                res = ''
                for item in out:
                    res += str(item) +' '   
                #print(res)
                fw1.write(res+'\n')
                label = root.strip().split('/')[-1]
                if(train == True):
                    fw2.write(label+'\n')
                    print(label)
                else:
                    fw2.write(file+'\n')
                    print(file)
    fw1.close()
    fw2.close()
    print('net done!!!')
    

pretrained_net = models.densenet121(pretrained=True)
net = nn.HybridSequential()
for layer in pretrained_net.features:
    net.add(layer)
print(net)
ctx = mx.gpu()
net.collect_params().reset_ctx(ctx)
net.hybridize()
dir = 'data/test_b/'
suffix=['jpg']
batch_net(dir,suffix,net,train=False)
Example #4
0
import json

import matplotlib.pyplot as plt
import mxnet as mx
from mxnet import gluon, nd
from mxnet.gluon.model_zoo import vision
import numpy as np

ctx = mx.cpu()

densenet121 = vision.densenet121(pretrained=True, ctx=ctx)
mobileNet = vision.mobilenet0_5(pretrained=True, ctx=ctx)
resnet18 = vision.resnet18_v1(pretrained=True, ctx=ctx)

mx.test_utils.download(
    'https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/doc/tutorials/onnx/image_net_labels.json'
)
categories = np.array(json.load(open('image_net_labels.json', 'r')))

# filename = mx.test_utils.download('https://github.com/dmlc/web-data/blob/master/mxnet/doc/tutorials/onnx/images/dog.jpg?raw=true', fname='dog.jpg')
filename = 'scorp.jpg'

image = mx.image.imread(filename)
plt.imshow(image.asnumpy())
plt.show()

# Read the image: this will return a NDArray shaped as (image height, image width, 3), with the three channels in RGB order.
# Resize the shorter edge of the image 224.
# Crop, using a size of 224x224 from the center of the image.
# Shift the mean and standard deviation of our color channels to match the ones of the dataset the network has been trained on.
# Transpose the array from (Height, Width, 3) to (3, Height, Width).
Example #5
0
def densenet121mxnetload():
    net = vision.densenet121(pretrained=True)
    net.hybridize()
    return net